帳號:guest(3.16.68.161)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許祐銘
論文名稱(中文):硫摻雜氧化鎢奈米線之成長及應用
論文名稱(外文):The Growth and Applications of Sulfur-doped Tungsten Oxide Nanowires
指導教授(中文):游萃蓉
口試委員(中文):林俊榮
李紫原
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031599
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:126
中文關鍵詞:硫摻雜氧化鎢奈米線光感測元件太陽能電池
相關次數:
  • 推薦推薦:0
  • 點閱點閱:220
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本研究藉由高溫爐管化學沉積成長一種穩定性高、無毒且對環境無害之新穎硫摻雜氧化鎢 (sulfur-doped tungsten oxide) 單晶奈米線,將此氧化物材料製作成場效電晶體以量測其電性。並且製作成感測器以及太陽能電池,了解其對於照光後之光電性,驗證其作為光感測器與太陽能電池吸收層之可行性。
本研究嘗試以調整不同重量比之反應前驅物、前驅物溫度、反應氣體氧氣與氬氣之流量比以及基板溫度,製備出不同摻雜濃度之硫摻雜氧化鎢奈米線。並以X光繞射、穿透式電子顯微鏡、能量散佈分析儀、感應耦合電漿質譜儀分析,確認已成功合成單晶之硫摻雜氧化鎢奈米線。在光學性質方面,利用紫外/可見光吸收光譜、陰極激發螢光放光系統,以及光激發螢光放光系統分析可知,隨著奈米線的硫摻雜量增加,吸收率與吸收係數也將隨之增加,其吸光係數最高可達7.8  104 cm-1,從紫外光到紅外光範圍內 (波長 300-1400 nm),其吸光率為 83-95 %,且其具有直接與多重的能隙,並可透過硫摻雜的含量來改變能隙範圍,其主要能隙在1.7- 1.8 eV,此廣波段光譜的吸收適合作用在光電元件上。在電性量測方面,利用組裝成場效電晶體量測電性,得知該材料可為電阻,p型半導體或n型半導體。
本研究也以硫摻雜氧化鎢奈米線作為感測材料組裝成光感測器,製作出一具有高光導增益、穩定且有再現性之光感測器。此外,也嘗試將硫摻雜氧化鎢奈米線作為一新穎之氧化物吸光材料,用作太陽能電池之吸光層,並顯示出一具有p-n junction特性之理想暗電流曲線,證實其用作於光感測器及太陽能電池之未來性與可行性。
A novel, stable, and environmentally friendly optoelectronic material, W18O49(S) single crystal nanowires, was synthesized in this study in a furnace by using thermal chemical vapor deposition.
The characterization of W18O49(S) was also shown in this work. The structure, crystallinity, and the quantity of sulfur of W18O49(S) nanowires were confirmed by X-ray diffractometer (XRD), transmission electron microscope (TEM), energy-dispersive X-ray spectrometer (EDX), and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results revealed that the single crystalline W18O49 nanowires were synthesized and sulfur was doped into the W18O49 successfully.
The results of UV-Vis spectrum, cathodoluminescence system (CL), and photoluminescence (PL) showed that the direct band gap of W18O49(S) was near 1.7 - 1.8 eV, which could be tuned by S-doping at different S-doping concentration. The W18O49(S) nanowires exhibited high absorption coefficient up to 7.8104 cm-1 and absorption rate of 83- 95 % at = 300-1400 nm which suggest that W18O49(S) of wide spectrum absorption could serve as a light absorbing agent. The electrical property of a single W18O49(S) nanowire was measured and calculated by field-effect transistor showing a p-type, n-type and resistance property.
In addition, a photo sensor and a solar cell were fabricated by W18O49(S) nanowires. The results showed a high photoconductivity gain (106-107) with good reliability and stability of photo sensor and ideal dark current curve of solar cell, which provided the feasibility of photo sensor and photovoltaic applications of the W18O49(S) nanowires presented in this study.
摘要..... I
Abstract III
誌謝...............................................................................IV
目錄.................................................................................X
圖目錄.. XIII
表目錄. XIX
第一章 緒論 1
第二章 文獻回顧與原理簡介 5
2.1 太陽能電池簡介 6
2.1.1 太陽能電池工作原理 10
2.1.2 太陽能電池電學性質 12
2.2 氧化物奈米結構作為光感測元件 16
2.3 氧化鎢基本性質、合成方法及應用 19
第三章 實驗流程與方法 21
3.1 實驗步驟 27
3.1.1 硫摻雜氧化鎢奈米線製備 27
3.1.2 硫摻雜氧化鎢(W18O49(S))奈米線場效電晶體、光感測元件與太陽能電池之製備 30
3.2 儀器簡介 38
3.2.1 場發射掃描式電子顯微鏡 38
3.2.2 高解析度穿透式電子顯微鏡、能量散佈能譜儀 40
3.2.3 X光繞射分析儀 42
3.2.4 陰極激發螢光放光儀 43
3.2.5 光激發螢光放光儀 45
3.2.6 紫外/可見光吸收光譜儀 47
3.2.7 聚焦離子束顯微系統 49
3.2.8 感應耦合電漿質譜分析儀 51
3.2.9 薄膜厚度輪廓量測儀 53
第四章 實驗結果與討論 54
4.1 化學氣相傳輸法合成W18O49(S)奈米結構 56
4.1.1 鎢前驅物WS2所佔之重量百分比對W18O49(S)奈米結構形貌之影響 56
4.1.2 前驅物WS2溫度對(W18O49(S))奈米結構形貌之影響 61
4.1.3 反應氣體(O2)與載流氣體(Ar)量流量比對W18O49(S)奈米結構形貌之影響 65
4.1.4 基板溫度對W18O49(S)奈米結構形貌之影響 69
4.2 W18O49(S)奈米線分析 73
4.2.1 W18O49(S)奈米線X光繞射分析 73
4.2.2 W18O49(S)奈米線微結構與結晶性分析 76
4.2.4 W18O49(S)奈米線微量元素分析 82
4.2.5 W18O49(S)奈米結構光學性質分析 84
4.2.5.1 W18O49(S)奈米結構紫外/可見光吸收光譜及其能隙分析 84
4.2.5.2 W18O49(S)奈米線陰極激發螢光放光能譜分析 87
4.2.5.3 W18O49(S)奈米線光激發螢光放光能譜分析 90
4.3 以W18O49(S)奈米線組成場效電晶體之電性量測 93
4.3.1 單根奈米線電性之量測 93
4.4 以W18O49(S)奈米線製作成光感測元件之光電特性量測 99
4.4.1 單根奈米線之光電特性之量測 99
4.5 以W18O49(S)奈米線組裝成太陽能電池元件分析 104
4.5.1 以濺鍍n-ZnS薄膜於成長有p-S-doped W18O49奈米線基板上製作太陽能電池 105
4.5.2 以水溶液製程合成n-CdS於成長有W18O49(S)奈米線基板上組成太陽能電池 109
第五章 結論 113
第六章 未來展望 115
參考文獻 117
本研究產出之論文發表 126
[1] http://en.wikipedia.org/wiki/Tungsten
[2] BP Statistical Review of World Energy June 2011, 2011, 1-38.
[3] 楊昌中,能源領域中的奈米科技研究,工業研究院能源與環境研究所,2006.
[4] Energy Information Administration, “2016 Levelized Cost of New Generation Resources from the Annual Energy Outlook 2010.”, International Energy Outlook 2010 – Highlights, 2010. Energy Information Administration, International Energy Outlook 2011.
[5] M. A. Green, “Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost.”, Prog. Photovolt: Res. Appl., 2001, 9, 123-135.
[6] G. F. Brown and J. Wu, “Third Generation Photovoltaics.”, Laser & Photon. Rev., 2009, 3, 294-405.
[7] G. W. Crabtree and N. S. Lewis, “Solar Energy Conversion.”, Physics Today, 2007, 37-42.
[8] N. S. Lewis, “Toward Cost-Effective Solar Energy Use.”, Science, 2007, 315, 798-801.
[9] D. M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 1954, 25, 676-677.
[10] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% Efficient ”Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells.”, Applied Physics Letters, 1998, 73, 1991–1993.
[11] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency.”, Prog. Photovolt: Res. Appl., 2004, 12,553–558.
[12] J. H. Petermann, D. Zielke, J. Schmidt, F. Rojas EG, and R. Brendel, “19 %-efficient and 43 m-thick crystalline Si solar cell from layer transfer using porous silicon.”, Progress In Photovoltaics 2012, 20, 1-5.
[13] M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% efficient CSG Minimodules.”, 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007.
[14] http://www.greentechmedia.com/articles/read/stealthyalta-devices-
next-gen-pv-challenging-the-status-quo/
[15] R. Venkatasubramanian, B. C. O ‟Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, and B. Keyes, “18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate.”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31–36.
[16] C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter Structures in MOCVD InP Solar Cells.”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141–144.
[17] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor.”, Progress in Photovoltaics, 2008, 16, 235-239.
[18] http://www.q-cells.com
[19] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi, and P. Sheldon, “16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell.”, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995–1000.
[20] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Spitznagel, J. Steinhauser, L. Castens, and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor.”, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009.
[21] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto, and A. Nakajima, “Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature.”, MRS Spring Meeting, San Francisco, April 1998.
[22] A. W. Bett, F. Dimroth, W. Guter, R. Hoheisen, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest efficiency multi-junction solar cell for terrestrial and space applications.”, Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009, 1–6.
[23] A. Banerjee, T. Su, D. Beglau, G. Pietka, F. Liu, G. DeMaggio, S. Almutawalli, B. Yan, G. Yue, J. Yang, and S. Guha, “High efficiency, multi-junction nc-Si:h based solar cells at high deposition rate.”, 37th IEEE PVSC, Seattle, June 2011.
[24] http://www.kaneka-solar.com
[25] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, and K. Yamamoto, “High efficiency thin film silicon hybrid solar cell module on Im2-class large area substrate.”, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566–1569.
[26] R. Service, “Outlook brightens for plastic solar cells.”, Science, 2011, 332, 293.
[27] K. Miyake, Y. Uetani, T. Seike, T. Kato, K. Oya, K. Yoshimura, and T. Ohnishi, “Development of next generation organic solar cell.” R&D Report, “SUMITOMO KAGAKU”, 2010, 2010-1.
[28] N. Koide, R. Yamanaka, and H. Katayama, “Recent advances of dye-sensitized solar cells and integrated modules at SHARP.”, MRS Proceedings 2009, 1211, 1211-R12-02.
[29] M. Morooka, R. Ogura, M. Orihashi, and M. Takenaka, “Development of dye-sensitized solar cells for practical applications.”, Electrochemistry, 2009, 77, 960–965.
[30] M. A. Green, Solar Cells, 1982, 62-84
[31] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 61-111
[32] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells.”, Science, 1999, 285, 692-698.
[33] R. H. Bube, Photoconductivity of Solids; Wiley: New York, 1960; p 461.
[34] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films.”, Jpn. J. Appl. Phys., 1994, 30, 6611-6615.
[35] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain.”, Nano Lett., 2007, 7, 1003-1009.
[36] K. Huang, Q. Zhang, F. Yang, and D. He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire.”, Nano Res. 2010, 3, 281-287.
[37] L. Li, Y. Zhang, X. Fang, T. Zhai, M. Liao, X. Sun, Y. Koide, Y. Bando, and D. Golberg, “WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters.”, J. Mater. Chem., 2011, 21, 6525-6530.
[38] G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu, “Tungsten Oxide Nanowires on Tungsten Substrates.”, Nano Lett., 2002, 2, 849-851.
[39] K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, and D. He, “Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries.”, J. Phys. D: Appl. Phys. 2008, 41, 155417.
[40] K. Tennakone, O. A. Ileperuma, J. M. S. Bandara, and W. C. B. Kiridena, “TiO2 and WO3 Semiconductor particles in contact: photochemical reduction of WO3 to the non-stoichiometric blue form.”, Semicond. Sci. Techonol. 1992, 7, 423-424.
[41] C. Guo, S. Yin, Q. Dong, and T. Sato, “The near infrared absorption properities of W18O49.”, RSC Advances, 2012, 2, 5041-5043.
[42] Q. Zhang, A. K. Chakraborty, and W. I. Lee, “W18O49 and WO3 Nanorod Arrays Prepared by AAO-templated Electrodeposition Method.”, Bull. Korean Chem., 2009, 30, 227-229.
[43] P. K. Sahoo, S. S. K. Kamal, M. Premkumar, T. J. Kumar, B. Sreedhar, A. K. Singh, S. K. Srivastava, and K. C. Sekhar, “Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl,”.Int. J. Refract. Met. H., 2009, 27, 784-791.
[44] Y. Hsieh, M. Huang, C, Chang, U. Chen, and H. Shih, “Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation.”, Thin Solid Films, 2010, 519, 1668-1672.
[45] K. Lee, W. S. Seo, and J. T. Park, “Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods.”, J. Am. Chem. Soc., 2003, 125, 3408-3409.
[46] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, amd H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films.” Appl. Phys. Lett. 2005, 86, 141901.
[47] C. Turchetti, and G. Masetti, “Analysis of the Depletion-Mode MOSFET Including Diffusion and Drift Currents.”, IEEE T Electron Dev., 1985,32, 773-782.
[48] J. W. Paimour, H. S. Kong, and R. F. Davis, “High-temperature depletion-mode metal-oxide-semiconductor field-effect transistor in beta-SiC thin films.”, Appl. Phys. Lett., 1987, 24, 2028-2030.
[49] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition.”, Appl. Phys. Lett. 2004, 84, 434-436.
[50] Y. M. Zhao and Y. Q. Zhu. “Room temperature ammonia sensing properties of W18O49 nanowires” Sensor and Actuators B: chemical 2009, 137, 27-31.
[51] H. Zheng , J. Z. Ou , M. S. Strano , R. B. Kaner , A. Mitchell ,and K. Kalantar-zadeh ” Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications” Advance Material 2011, 21, 2175-2196.

[52] D. Wand, Q. Wang, A. Javey, R. Tu, and H. Dai, “Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielctrics.”, Appl. Phys. Lett. 2003, 83, 2432-2434.
[53] J. Tang, C. Wang, F. Xiu, M. Lang, L. Chu, C. Tsai, Y. Chueh, L. Chen, and K. Wang, “Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors.”, Appl. Phys. Lett. 2011, 7, 6008-6015.
[54] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors.”, Nano Lett. 2003, 3, 149-152.
[55] Y. Huang, X. Duan, Y. Cui, and Charles M. Lieber, “Gallium Nitride Nanowire Nanodevices.”, Nano Lett. 2002, 2, 101-104.
[56] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, “ZnO nanowire Transistors.”, J. Phys. Chem. B, 2005, 109, 9-14.
[57] J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive Characteristics of Single-Crystal CdS Nanoribbons.”, Nano Lett., 2006, 6, 1887-1892.
[58] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles.”, Nano Lett., 2008, 8, 1649-1653.
[59] C. Zhang, S. Wang, L. Yang, Y. Liu, T. Xu, Z. Ning, A. Zak, Z. Zhang, R. Tenne, and Q. Chen, “High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes.”, Appl. Phys. Lett. 2012, 100, 243101-1-243101-5.
[60] F. Yang, K. Huang, S. Ni, Q. Wang, and D. He, “W18O49 Nanowires as Ultraviolet Photodetector.”, Nanoscale Res. Lett. 2010, 5, 416-419.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *