|
[1] http://en.wikipedia.org/wiki/Tungsten [2] BP Statistical Review of World Energy June 2011, 2011, 1-38. [3] 楊昌中,能源領域中的奈米科技研究,工業研究院能源與環境研究所,2006. [4] Energy Information Administration, “2016 Levelized Cost of New Generation Resources from the Annual Energy Outlook 2010.”, International Energy Outlook 2010 – Highlights, 2010. Energy Information Administration, International Energy Outlook 2011. [5] M. A. Green, “Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost.”, Prog. Photovolt: Res. Appl., 2001, 9, 123-135. [6] G. F. Brown and J. Wu, “Third Generation Photovoltaics.”, Laser & Photon. Rev., 2009, 3, 294-405. [7] G. W. Crabtree and N. S. Lewis, “Solar Energy Conversion.”, Physics Today, 2007, 37-42. [8] N. S. Lewis, “Toward Cost-Effective Solar Energy Use.”, Science, 2007, 315, 798-801. [9] D. M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 1954, 25, 676-677. [10] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% Efficient ”Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells.”, Applied Physics Letters, 1998, 73, 1991–1993. [11] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency.”, Prog. Photovolt: Res. Appl., 2004, 12,553–558. [12] J. H. Petermann, D. Zielke, J. Schmidt, F. Rojas EG, and R. Brendel, “19 %-efficient and 43 m-thick crystalline Si solar cell from layer transfer using porous silicon.”, Progress In Photovoltaics 2012, 20, 1-5. [13] M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% efficient CSG Minimodules.”, 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007. [14] http://www.greentechmedia.com/articles/read/stealthyalta-devices- next-gen-pv-challenging-the-status-quo/ [15] R. Venkatasubramanian, B. C. O ‟Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, and B. Keyes, “18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate.”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31–36. [16] C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter Structures in MOCVD InP Solar Cells.”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141–144. [17] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor.”, Progress in Photovoltaics, 2008, 16, 235-239. [18] http://www.q-cells.com [19] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi, and P. Sheldon, “16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell.”, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995–1000. [20] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Spitznagel, J. Steinhauser, L. Castens, and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor.”, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009. [21] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto, and A. Nakajima, “Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature.”, MRS Spring Meeting, San Francisco, April 1998. [22] A. W. Bett, F. Dimroth, W. Guter, R. Hoheisen, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest efficiency multi-junction solar cell for terrestrial and space applications.”, Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009, 1–6. [23] A. Banerjee, T. Su, D. Beglau, G. Pietka, F. Liu, G. DeMaggio, S. Almutawalli, B. Yan, G. Yue, J. Yang, and S. Guha, “High efficiency, multi-junction nc-Si:h based solar cells at high deposition rate.”, 37th IEEE PVSC, Seattle, June 2011. [24] http://www.kaneka-solar.com [25] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, and K. Yamamoto, “High efficiency thin film silicon hybrid solar cell module on Im2-class large area substrate.”, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566–1569. [26] R. Service, “Outlook brightens for plastic solar cells.”, Science, 2011, 332, 293. [27] K. Miyake, Y. Uetani, T. Seike, T. Kato, K. Oya, K. Yoshimura, and T. Ohnishi, “Development of next generation organic solar cell.” R&D Report, “SUMITOMO KAGAKU”, 2010, 2010-1. [28] N. Koide, R. Yamanaka, and H. Katayama, “Recent advances of dye-sensitized solar cells and integrated modules at SHARP.”, MRS Proceedings 2009, 1211, 1211-R12-02. [29] M. Morooka, R. Ogura, M. Orihashi, and M. Takenaka, “Development of dye-sensitized solar cells for practical applications.”, Electrochemistry, 2009, 77, 960–965. [30] M. A. Green, Solar Cells, 1982, 62-84 [31] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 61-111 [32] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells.”, Science, 1999, 285, 692-698. [33] R. H. Bube, Photoconductivity of Solids; Wiley: New York, 1960; p 461. [34] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films.”, Jpn. J. Appl. Phys., 1994, 30, 6611-6615. [35] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain.”, Nano Lett., 2007, 7, 1003-1009. [36] K. Huang, Q. Zhang, F. Yang, and D. He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire.”, Nano Res. 2010, 3, 281-287. [37] L. Li, Y. Zhang, X. Fang, T. Zhai, M. Liao, X. Sun, Y. Koide, Y. Bando, and D. Golberg, “WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters.”, J. Mater. Chem., 2011, 21, 6525-6530. [38] G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu, “Tungsten Oxide Nanowires on Tungsten Substrates.”, Nano Lett., 2002, 2, 849-851. [39] K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, and D. He, “Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries.”, J. Phys. D: Appl. Phys. 2008, 41, 155417. [40] K. Tennakone, O. A. Ileperuma, J. M. S. Bandara, and W. C. B. Kiridena, “TiO2 and WO3 Semiconductor particles in contact: photochemical reduction of WO3 to the non-stoichiometric blue form.”, Semicond. Sci. Techonol. 1992, 7, 423-424. [41] C. Guo, S. Yin, Q. Dong, and T. Sato, “The near infrared absorption properities of W18O49.”, RSC Advances, 2012, 2, 5041-5043. [42] Q. Zhang, A. K. Chakraborty, and W. I. Lee, “W18O49 and WO3 Nanorod Arrays Prepared by AAO-templated Electrodeposition Method.”, Bull. Korean Chem., 2009, 30, 227-229. [43] P. K. Sahoo, S. S. K. Kamal, M. Premkumar, T. J. Kumar, B. Sreedhar, A. K. Singh, S. K. Srivastava, and K. C. Sekhar, “Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl,”.Int. J. Refract. Met. H., 2009, 27, 784-791. [44] Y. Hsieh, M. Huang, C, Chang, U. Chen, and H. Shih, “Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation.”, Thin Solid Films, 2010, 519, 1668-1672. [45] K. Lee, W. S. Seo, and J. T. Park, “Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods.”, J. Am. Chem. Soc., 2003, 125, 3408-3409. [46] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, amd H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films.” Appl. Phys. Lett. 2005, 86, 141901. [47] C. Turchetti, and G. Masetti, “Analysis of the Depletion-Mode MOSFET Including Diffusion and Drift Currents.”, IEEE T Electron Dev., 1985,32, 773-782. [48] J. W. Paimour, H. S. Kong, and R. F. Davis, “High-temperature depletion-mode metal-oxide-semiconductor field-effect transistor in beta-SiC thin films.”, Appl. Phys. Lett., 1987, 24, 2028-2030. [49] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition.”, Appl. Phys. Lett. 2004, 84, 434-436. [50] Y. M. Zhao and Y. Q. Zhu. “Room temperature ammonia sensing properties of W18O49 nanowires” Sensor and Actuators B: chemical 2009, 137, 27-31. [51] H. Zheng , J. Z. Ou , M. S. Strano , R. B. Kaner , A. Mitchell ,and K. Kalantar-zadeh ” Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications” Advance Material 2011, 21, 2175-2196.
[52] D. Wand, Q. Wang, A. Javey, R. Tu, and H. Dai, “Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielctrics.”, Appl. Phys. Lett. 2003, 83, 2432-2434. [53] J. Tang, C. Wang, F. Xiu, M. Lang, L. Chu, C. Tsai, Y. Chueh, L. Chen, and K. Wang, “Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors.”, Appl. Phys. Lett. 2011, 7, 6008-6015. [54] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors.”, Nano Lett. 2003, 3, 149-152. [55] Y. Huang, X. Duan, Y. Cui, and Charles M. Lieber, “Gallium Nitride Nanowire Nanodevices.”, Nano Lett. 2002, 2, 101-104. [56] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, “ZnO nanowire Transistors.”, J. Phys. Chem. B, 2005, 109, 9-14. [57] J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive Characteristics of Single-Crystal CdS Nanoribbons.”, Nano Lett., 2006, 6, 1887-1892. [58] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles.”, Nano Lett., 2008, 8, 1649-1653. [59] C. Zhang, S. Wang, L. Yang, Y. Liu, T. Xu, Z. Ning, A. Zak, Z. Zhang, R. Tenne, and Q. Chen, “High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes.”, Appl. Phys. Lett. 2012, 100, 243101-1-243101-5. [60] F. Yang, K. Huang, S. Ni, Q. Wang, and D. He, “W18O49 Nanowires as Ultraviolet Photodetector.”, Nanoscale Res. Lett. 2010, 5, 416-419.
|