帳號:guest(52.14.90.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊富欽
作者(外文):Yang, Fu-chin
論文名稱(中文):照明用擬自然光有機發光二極體之研製
論文名稱(外文):Fabrication Study of Pseudo-natural Light Organic Light Emitting Diode for Lighting
指導教授(中文):周卓煇
口試委員(中文):周卓煇
岑尚仁
薛景中
金志龍
蔡永誠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031597
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:111
中文關鍵詞:自然光有機發光二極體光譜模擬黑體輻射相似性
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自然光,尤其是日光,提供萬物舒適的視覺感受亦可調節生理時鐘;日光,即使是經過大氣層中氣體的吸收,它的放射光譜,具有平滑且連續的特質。一個照明光源的品質,應直接與自然光做比較,而且必須要考慮人眼對於光的感受度,而不是從儀器量測的角度。因此,本研究提出了一個新的量化光源品質指標,此指標是根據光源與相對應自然光光譜相似的程度來評價光源品質。為了得到高的自然光譜相似性,本研究以多個窄波發光二極體元件及寬波有機發光二極體染料之光譜做光譜模擬,找出適當的合成比例,以使用兩種到六種可以合成出白光的發光體為例,窄波的發光二極體元件所合成出來的擬自然光白光之光譜相似性從58提高到83;然而,具有寬波幅的有機發光染料卻可由88提高到98;據此,本研究亦提出了一個製作高擬真自然光的原則:製作高擬真自然光必須使用多個寬波幅發光體。而此原則可應用於任何光源,例如窄波段的無機發光二極體,若搭配具有寬廣光譜的螢光粉,也能夠合成出高自然光譜相似性光源。而根據模擬結果,本研究使用六種有機染料,分別是深藍光、天藍光、綠光、黃光、橘紅光以及深紅光發光體,製作出具有晨曦、日正當中及夕陽光色的擬自然光有機發光二極體,且都具有高於90%以上自然光譜相似性。此一新指標的提出,可以解決傳統光源品質指標目前所遇到的困境,例如:具有高演色性的螢光燈管其自然光譜相似性並不高;然而,具有低演色性的高壓鈉燈,其光譜相似性卻不低。
目錄
摘要 II
Abstract IV
致謝 VI
目錄 VIII
圖目錄 XII
表目錄 XIV
壹、 緒論 1
貳、 文獻回顧 3
2-1 有機發光二極體 3
2-1-1有機發光二極體歷史 3
2-1-2有機發光二極體的發光原理 18
2-1-3能量傳遞機制 26
2-1-4光取出效率 30
2-2 有機發光二極體之材料發展 32
2-2-1陽極材料 32
2-2-2電洞注入材料 33
2-2-3電洞傳輸材料 33
2-2-4電子傳輸材料 34
2-2-5電子注入材料 34
2-2-7陰極材料 35
2-3 色彩學基本理論 36
2-3-1光與視覺 36
2-3-2 CIE色座標系統的建立 42
2-3-3 色溫與黑體輻射 47
2-3-4光源演色性評價 49
2-3-5其他光源評價標準 51
2-4 照明用光源發展史 53
2-4-1 蠟燭 53
2-4-2白熾燈泡 53
2-4-3螢光燈 54
2-4-4高壓鈉燈 54
2-4-5 LED 55
2-4-6 OLED 57
參、 實驗方法 58
3-1 使用材料 58
3-1-1 材料之功能、全名及簡稱 58
3-1-2 本研究所使用有機材料之化學結構式 62
3-2 元件設計及製備 67
3-2-1 元件電路設計 67
3-2-2 基板清洗 68
3-2-3 蒸鍍裝置 69
3-2-4 成膜鍍率測定 71
3-2-5 蒸鍍製程 72
3-3 元件光電特性量測 73
肆、 結果與討論 75
4-1 自然光特性 75
4-2 新的光源品質指標-黑體輻射相似性 78
4-3 現有光源與自然光譜的相似性 80
4-4 以多種光色染料進行光譜模擬之結果 82
4-5 製作與自然光譜高度相似性光源的原則 85
4-6 擬自然光OLED元件製作 86
4-6-1 發光染料之選擇 86
4-6-2 元件之能階結構 88
4-6-3 擬黃昏色溫OLED元件之探討 90
4-6-4 擬晨曦色溫OLED元件之探討 92
4-6-5 擬日正當中色溫OLED元件之探討 94
伍、 結論 99
陸、 參考資料 101
附錄、個人著作附錄 116
(A) 期刊論文 116
(B) 研討會論文 117
陸、 參考資料
1. Jou JH, Hsieh CY, Tseng JR, Peng SH, Jou YC, Hong JH, et al. Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials 2012.

2. Rahman MS, Kim BH, Takemura A, Park CB, Lee YD. Effects of moonlight exposure on plasma melatonin rhythms in the seagrass rabbitfish, Siganus canaliculatus. Journal of biological rhythms 2004, 19(4): 325-334.

3. Savides TJ, Messin S, Senger C, Kripke DF. Natural light exposure of young adults. Physiology & behavior 1986, 38(4): 571-574.

4. Smith H. Light quality, photoperception, and plant strategy. Annual review of plant physiology 1982, 33(1): 481-518.

5. Lockley SW. High Sensitivity of the Human Circadian Melatonin Rhythm to Resetting by Short Wavelength Light. Journal of Clinical Endocrinology & Metabolism 2003, 88(9): 4502-4502.

6. Pauley SM. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical Hypotheses 2004, 63(4): 588-596.

7. Thorington L. Spectral, irradiance, and temporal aspects of natural and artificial light. Annals of the New York Academy of Sciences 1985, 453(1): 28-54.

8. Webb AR. Considerations for lighting in the built environment: Non-visual effects of light. Energy and Buildings 2006, 38(7): 721-727.

9. Condit H, Grum F. Spectral energy distribution of daylight. JOSA 1964, 54(7): 937-940.

10. Dixon E. Spectral distribution of Australian daylight. JOSA 1978, 68(4): 437-450.

11. Hernández-Andrés J, Romero J, Nieves JL, Lee Jr RL. Color and spectral analysis of daylight in southern Europe. JOSA A 2001, 18(6): 1325-1335.

12. Judd DB, MacAdam DL, Wyszecki G, Budde H, Condit H, Henderson S, et al. Spectral distribution of typical daylight as a function of correlated color temperature. JOSA 1964, 54(8): 1031-1040.

13. Taylor A, Kerr G. The distribution of energy in the visible spectrum of daylight. JOSA 1941, 31(1): 3-8.

14. Anshel J. Visual ergonomics handbook. CRC Press, 2010.

15. Kimura N, Sakuma K, Hirafune S, Asano K, Hirosaki N, Xie R-J. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Applied physics letters 2007, 90(5): 051109-051109-051103.

16. Pimputkar S, Speck JS, DenBaars SP, Nakamura S. Prospects for LED lighting. Nature photonics 2009, 3(4): 180-182.

17. Radkov E, Setlur A, Brown Z, Reginelli J. High CRI phosphor blends for near-UV LED lamps. Optical Science and Technology, the SPIE 49th Annual Meeting; 2004: International Society for Optics and Photonics; 2004. p. 260-265.

18. Schubert EF, Kim JK. Solid-state light sources getting smart. Science 2005, 308(5726): 1274-1278.

19. Bernanose A, Comte M, Vouaux P. *Sur Un Nouveau Mode Demission Lumineuse Chez Certains Composes Organiques. J Chim Phys Pcb 1953, 50(1): 64-68.

20. Pope M, Magnante P, Kallmann HP. Electroluminescence in Organic Crystals. J Chem Phys 1963, 38(8): 2042.

21. Helfrich W, Schneide.Wg. Recombination Radiation in Anthracene Crystals. Physical Review Letters 1965, 14(7): 229.

22. Helfrich W, Schneide.Wg. Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene. J Chem Phys 1966, 44(8): 2902-&.

23. Williams DF, Schadt M. A Simple Organic Electroluminescent Diode. Pr Inst Electr Elect 1970, 58(3): 476-&.

24. Vincett PS, Barlow WA, Hann RA, Roberts GG. Electrical-Conduction and Low-Voltage Blue Electro-Luminescence in Vacuum-Deposited Organic Films. Thin Solid Films 1982, 94(2): 171-183.

25. Partridge RH. Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations. Polym Ch Tech Kaunas 1982, 24: 733.

26. Tang CW, Vanslyke SA. Organic Electroluminescent Diodes. Appl Phys Lett 1987, 51(12): 913-915.

27. Steven A. VanSlyke CWT, Luther C. Roberts. Electroluminescent Device WIth Organic Luminescent Medium. United States Patent 1988: 4720432.

28. Tang CW, Vanslyke SA, Chen CH. Electroluminescence of Doped Organic Thin-Films. J Appl Phys 1989, 65(9): 3610-3616.

29. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, et al. Light-Emitting-Diodes Based on Conjugated Polymers. Nature 1990, 347(6293): 539-541.

30. Richard H. Friend JHB, Conal D. Bradley. Electroluminescent Device. United States Patent 1993: 5247190.

31. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ. Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers. Nature 1992, 357(6378): 477-479.

32. Kido J, Ohtaki C, Hongawa K, Okuyama K, Nagai K. 1,2,4-Triazole Derivative as an Electron-Transport Layer in Organic Electroluminescent Devices. Jpn J Appl Phys 2 1993, 32(7A): L917-L920.

33. Kido J, Kimura M, Nagai K. Multilayer White Light-Emitting Organic Electroluminescent Device. Science 1995, 267(5202): 1332-1334.

34. Kido J, Shionoya H, Nagai K. Single-Layer White Light-Emitting Organic Electroluminescent Devices Based on Dye-Dispersed Poly(N-Vinylcarbazole). Appl Phys Lett 1995, 67(16): 2281-2283.

35. Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, et al. Multilayered Organic Electroluminescent Device Using a Novel Starburst Molecule, 4,4',4''-Tris(3-Methylphenylphenylamino)Triphenylamine, as a Hole Transport Material. Applied Physics Letters 1994, 65(7): 807-809.

36. Tokito S, Noda K, Taga Y. Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 1996, 29(11): 2750-2753.

37. Hung LS, Tang CW, Mason MG. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters 1997, 70(2): 152-154.

38. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395(6698): 151-154.

39. Adachi C, Baldo MA, Thompson ME, Forrest SR. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J Appl Phys 2001, 90(10): 5048-5051.

40. Blochwitz J, Pfeiffer M, Fritz T, Leo K. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl Phys Lett 1998, 73(6): 729-731.

41. Huang JS, Pfeiffer M, Werner A, Blochwitz J, Leo K, Liu SY. Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters 2002, 80(1): 139-141.

42. Liao LS, Klubek KP, Tang CW. High-efficiency tandem organic light-emitting diodes. Applied Physics Letters 2004, 84(2): 167-169.

43. Shao Y, Yang Y. White organic light-emitting diodes prepared by a fused organic solid solution method. Appl Phys Lett 2005, 86(7).

44. Kwong RC, Lamansky S, Thompson ME. Organic light-emitting devices based on phosphorescent hosts and dyes. Adv Mater 2000, 12(15): 1134.

45. Sun Y, Forrest SR. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photonics 2008, 2(8): 483-487.

46. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459(7244): 234-U116.

47. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492(7428): 234.

48. Dodabalapur A. Organic light emitting diodes. Solid State Commun 1997, 102(2-3): 259-267.

49. Swenberg MPaCE. Electronic Process in Organic Crystals and Polymers, Second Edition. Oxford University Press 1999.

50. Dodabalapur BL. Solid state Com 1997, 102: 259.

51. Barth S, Wolf U, Bassler H, Muller P, Riel H, Vestweber H, et al. Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation. Phys Rev B 1999, 60(12): 8791-8797.

52. Murgatro.Pn. Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. J Phys D Appl Phys 1970, 3(2): 151.

53. Jablonski A. Efficiency of anti-stokes fluorescence in dyes. Nature 1933, 131: 839-840.

54. S. Miyata HSN. Organic Electroluminescent Materials and Devices. Gordon and Breach Science Publishers 1997: Chap 1.

55. Sugiyama K, Yoshimura D, Miyamae T, Miyazaki T, Ishii H, Ouchi Y, et al. Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy. J Appl Phys 1998, 83(9): 4928-4938.

56. Thompson LG, Webber SE. External Heavy Atom Effect on Phosphorescence Spectra of Some Halonaphthalenes. J Phys Chem-Us 1972, 76(2): 221

57. Dexter DL. A Theory of Sensitized Luminescence in Solids. J Chem Phys 1953, 21(5): 836-850.

58. Forster T. *Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann Phys-Berlin 1948, 2(1-2): 55-75.

59. Bulovic V, Khalfin VB, Gu G, Burrows PE, Garbuzov DZ, Forrest SR. Weak microcavity effects in organic light-emitting devices. Physical Review B 1998, 58(7): 3730-3740.

60. Williams CD, Robles RO, Zhang M, Li S, Baughman RH, Zakhidov AA. Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes. Applied Physics Letters 2008, 93(18).

61. Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 2006, 6(9): 1880-1886.

62. VanSlyke SA, Chen CH, Tang CW. Organic electroluminescent devices with improved stability. Appl Phys Lett 1996, 69(15): 2160-2162.

63. Elschner A, Bruder F, Heuer HW, Jonas F, Karbach A, Kirchmeyer S, et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals 2000, 111: 139-143.

64. Higginson KA, Zhang XM, Papadimitrakopoulos F. Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq(3)). Chem Mat 1998, 10(4): 1017-1020.

65. Sakamoto G, Adachi C, Koyama T, Taniguchi Y, Merritt CD, Murata H, et al. Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules. Appl Phys Lett 1999, 75(6): 766-768.

66. Giebeler C, Antoniadis H, Bradley DDC, Shirota Y. Influence of the hole transport layer on the performance of organic light-emitting diodes. J Appl Phys 1999, 85(1): 608-615.

67. Makinen AJ, Hill IG, Shashidhar R, Nikolov N, Kafafi ZH. Hole injection barriers at polymer anode/small molecule interfaces. Appl Phys Lett 2001, 79(5): 557-559.

68. Wakimoto T, Fukuda Y, Nagayama K, Yokoi A, Nakada H, Tsuchida M. Organic EL cells using alkaline metal compounds as electron injection materials. Ieee T Electron Dev 1997, 44(8): 1245-1248.

69. Ganzorig C, Suga K, Fujihira M. Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mat Sci Eng B-Solid 2001, 85(2-3): 140-143.

70. Hung LS. Efficient and stable organic light-emitting diodes with a sputter-deposited cathode. Thin Solid Films 2000, 363(1-2): 47-50.

71. Dowling J, Boycott B. Organization of the primate retina: electron microscopy. Proceedings of the Royal Society of London Series B, Biological Sciences 1966: 80-111.

72. 大田登. 色彩工程學 - 理論與應用. 全華圖書股份有限公司, 2008.

73. http://www.studenthealth.gov.hk/tc_chi/health/health_ev/images/sp1.gif. [cited]Available from:

74. Pirenne MH. Independent Light-Detectors in the Peripheral Retina. J Physiol-London 1948, 107(4): P47-P47.

75. Kolb H FE, Nelson R. . The Organization of the Retina and Visual System

76. http://www.rags-int-inc.com/PhotoTechStuff/CameraEye/.

77. http://en.wikipedia.org/wiki/Luminosity_function

78. Sharpe LT, Stockman A, Jagla W, Jägle H. A luminous efficiency function, V*(λ), for daylight adaptation. Journal of Vision 2005, 5(11).

79. Wald G. HUMAN VISION AND THE SPECTRUM. Science 1945, 101(2635): 653-658.

80. Smith T, Guild J. The CIE colorimetric standards and their use. Transactions of the Optical Society 1931, 33(3): 73.

81. (1932) C. Commission internationale de l'Eclairage proceedings. 1931.

82. Guild J. The colormetric properties of the spectrum. P R Soc Lond B-Conta 1931, 108(759): 576-576.

83. D.B J. Colorimetry and Artificial daylight. Proc 12th session CIE, Stockholm, I,Tech Committee 1951, No 7: p. 11.

84. Vos J. Colorimetric and photometric properties of a 2 fundamental observer. Color Research & Application 1978, 3(3): 125-128.

85. l'éclairage Cid. Colorimetry. Publication Report 1986, No. 15.2.

86. http://www.color-theory-phenomena.nl/10.02.htm.

87. Planck M. On the law of the energy distribution in the normal spectrum. Ann Phys 1901, 4(553): 90.

88. http://www.mediacollege.com/lighting/colour/images/colour-temperature.gif.

89. Method of measuring and specifying colour rendering properties of light sources. CIE Publication 1995, No. 13.3.

90. Robertso.Ar. Computation of Correlated Color Temperature and Distribution Temperature. J Opt Soc Am 1968, 58(11): 1528.

91. Luo MR. The quality of light sources. Coloration Technology 2011, 127(2): 75-87.

92. Faranda R, Guzzetti S, Leva S. Design and Technology for Efficient Lighting. Paths to Sustainable Energy, Jatin Nathwani and Artie Ng (Ed) 2010.

93. Potera C. The core of the candle problem. Environmental health perspectives 2000, 108(4): A165.

94. Damelincourt J-J. Lamps and lighting. Engineering Science and Education Journal 2000, 9(5): 196-202.

95. 許招墉. 照明手冊. 2006.

96. https://zh.wikipedia.org/wiki/%E8%9E%A2%E5%85%89%E7%87%88.

97. Van Vliet J, De Groot J. High-pressure sodium discharge lamps. Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A 1981, 128(6): 415-441.

98. Wharmby D. Scientific aspects of the high-pressure sodium lamp. Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A 1980, 127(3): 165-172.

99. Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. ChemSusChem 2008, 1(11): 880-891.

100. http://wenku.baidu.com/view/b8f257a00029bd64783e2c27.html.

101. 吳日中. 人造夕陽光-有機發光二極體之研製. 2012.

102. Wu CC, Lin YT, Wong KT, Chen RT, Chien YY. Efficient Organic Blue‐Light‐Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties. Advanced Materials 2004, 16(1): 61-65.

103. Chien C-H, Hsu F-M, Shu C-F, Chi Y. Efficient red electrophosphorescence from a fluorene-based bipolar host material. Organic Electronics 2009, 10(5): 871-876.

104. Kozaki T, Koga S, Toda N, Noguchi H, Yasukouchi A. Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neuroscience letters 2008, 439(3): 256-259.

105. Noguchi H, Sakaguchi T. Effect of illuminance and color temperature on lowering of physiological activity. Applied Human Science 1999, 18(4): 117-123.

106. Cajochen C. Alerting effects of light. Sleep medicine reviews 2007, 11(6): 453-464.

107. Figueiro MG, Rea MS, Bullough JD. Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neuroscience letters 2006, 406(3): 293-297.

108. Viola AU, James LM, Schlangen LJM, Dijk D-J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scandinavian Journal of Work, Environment & Health 2008, 34(4): 297-306.

109. Lighting the way Perspectives on the global lighting market. McKinsey&Company 2012.

110. Navigant Consulting I. 2010 U.S. Lighting Market Characterization. US Department of Energy January 2012.


(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *