|
[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene”, Nature, Vol. 318, pp. 162-163, 1985. [2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58, 1991. [3] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, Vol. 363, pp. 603-605, 1993. [4] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007. [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, 2004. [6] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, Vol. 321, pp. 385-388, 2008. [7] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Letters, Vol. 8, pp. 902-907, 2008. [8] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotechnology, Vol. 3, pp. 206-209, 2008. [9] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications”, Advanced Materials, Vol. 35, pp. 3906-3924, 2010. [10] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: past, present and future”, Progress in Materials Science, Vol. 56, pp. 1178-1271, 2011. [11] A. Varykhalov and O. Rader, “Graphene grown on Co (0001) films and islands: electronic structure and it precise magnetization dependence”, Physical Review B, Vol. 80, pp. 035437 (6), 2009. [12] A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, “Electronic and magnetic properties of quasifreestanding graphene on Ni”, Physical Review B, Vol. 101, pp. 157601 (4), 2008. [13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-1314, 2009. [14] M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, “Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure”, Physical Chemistry Chemical Physics, Vol. 13, pp. 20836-20843, 2011. [15] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes”, Nano Letter, Vol. 9, pp. 4359-4363, 2009. [16] B. C. Brodie, “On the atomic weight of graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859. [17] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol. 80, p. 1339, 1958. [18] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets”, Nature Nanotechnology, Vol. 3, pp. 101-105, 2008. [19] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009. [20] C. Zhu, S. Guo, Y. Fang, and S. Dong, “Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets”, ACS Nano, Vol. 4, pp. 2429-2437, 2010. [21] T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “A green approach for the reduction of graphene oxide by wild carrot root”, Carbon, Vol. 50, pp. 914-921, 2012. [22] Y. Wang, Z. Shi, and J. Yin, “Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites”, ACS Applied Materials & Interfaces, Vol. 3, pp. 1127-1133, 2011. [23] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, “One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid- functionalized graphene sheets directly from graphite”, Advanced Functional Materials, Vol. 18, pp. 1518-1525, 2008. [24] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation”, Carbon, Vol. 47, pp. 3242-3246, 2009. [25] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation”, ACS Nano, Vol. 5, pp. 2332-2339, 2011. [26] 林良平等譯, 細胞分子生物學, 茂昌圖書有限公司, 1984. [27] L. Hayflick and P. S. Moorhead, “The serial cultivation of human diploid cell strains”, Experiment Cell Research, Vol. 25, pp. 585-621, 1961. [28] J. F. R. Kerr, A. H. Wyline, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics”, British Journal of Cancer, Vol. 26, pp. 239-257, 1972. [29] N. K. Kuan and E. Passaro, “Apoptosis: programmed cell death”, Archives of Surgery, Vol. 133, pp. 773-775, 1998. [30] S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Nanomedicine: current status and future prospects”, The FASEB Journal, Vol. 19, pp. 311-330, 2005. [31] M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of focal heat destruction of liver tumors”, Journal of Surgical Research, Vol. 127, pp. 208-223, 2005. [32] Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic- Markovic, D. P. Kepic, K. M. Arsikin, S. P. Jovanovic, A. C. Pantovic, M. D. Dramicanin, and V. S. Trajkovic, “ In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes”, Biomaterials, Vol. 32, pp. 1121-1129, 2011. [33] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy”, Nano Letters, Vol. 10, pp. 3318-3323, 2010. [34] Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs”, Journal of the American Chemical Society, Vol. 130, pp. 10876-10877, 2008. [35] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery”, Nano Research, Vol. 1, pp. 203-212, 2008. [36] T. R. Nayak, H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P. L. R. Ee, J. H. Ahn, B. H. Hong, G. Pastorin, and B. Özyilmaz, “Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells”, ACS Nano, Vol. 5, pp. 4670-4678, 2011. [37] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, and A. S. Biris, “Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells”, ACS Nano, Vol. 4, pp. 3181-3186, 2010. [38] A. Sasidharan, L. S. Panchakarla, A. R. Sadanandan, A. Ashokan, P. Chandran, C. M. Girish, D. Menon, S. V. Nair, C. N. R. Rao, and M. Koyakutty, “Hemocompatibility and macrophage response of pristine and functionalized graphene”, Small, Vol. 8, pp. 1251-1263, 2012. [39] O. Akhavan, E. Ghaderi, and A. Akhavan, “Size-dependent genotoxicity of graphene nanoplatelets in human stem cells”, Biomaterials, Vol. 33, pp. 8017-8025, 2012. [40] K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, and D. Cui, “Biocompatibility of graphene oxide”, Nanoscale Research Letters, Vol. 6, pp. 8 (8), 2011. [41] S. Zhang, P. Xiong, X. Yang, and X. Wang, “Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability”, Nanoscale, Vol. 3, pp. 2169-2174, 2011. [42] K. Yang, H. Gong, X. Shi, J. Wan, Y. Zhang, and Z. Liu, “In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration”, Biomaterials, Vol. 34, pp. 2787-2795, 2013. [43] D. Kim, Y. S. Lin, and C. L. Haynes, “On-chip evaluation of shear stress effect on cytotoxicity of mesoporous silica nanoparticles”, Analytical Chemistry, Vol. 83, pp. 8377-8382, 2011. [44] S. Mao, D. Gao, W. Liu, H. Wei, and J. M. Lin, “Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection”, Lab on a Chip, Vol. 12, pp. 219-226, 2012. [45] T. G. Papaioannou and C. Stefanadis, “Vascular wall shear stress basic principles and methods”, Hellenic Journal of Cardiology, Vol. 46, pp. 9-15, 2005. [46] A. H. Cory, T. C. Owen, J. A. Barltrop, and J. G. Cory, “Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture”, Cancer Communications, Vol. 3, pp. 207-212, 1991. [47] 陳家全、李家維、楊瑞森, ”生物電子顯微鏡學”, 國科會精儀中心, pp. 25-35, 1991. [48] N. J. Kent, L. Basabe-Desmonts, G. Meade, B. D. MacCraith, B. G. Corcoran, D. Kenny, and A. J. Ricco, “Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces”, Biomedical Microdevices, Vol. 12, pp. 987-1000, 2010. [49] F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite”, Journal of Chemical Physics, Vol. 53, pp. 1126-1130, 1970. [50] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Physical Review Letters, Vol. 97, pp. 187401 (4), 2006. [51] C. Bussy, H. Ali-Boucetta, and K. Kostarelos, “Safety considerations for graphene lessons learnt from carbon nanotubes”, Accounts of Chemical Research, Vol. 46, pp. 692-701, 2013. [52] H. Yue, W. Wei, Z. Yue, B. Wang, N. Luo, Y. Gao, D. Ma, G. Ma, and Z. Su, “The role of the lateral dimension of graphene oxide in the regulation of cellular responses”, Biomaterials, Vol. 33, pp. 4013-4021, 2012.
|