帳號:guest(3.133.131.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂誌偉
作者(外文):Lu, Chih-Wei
論文名稱(中文):小分子施體、電子傳輸材料及透明奈米銀線電極在有機太陽能電池上之應用
論文名稱(外文):Applications of Small Molecule Donors, Electron Transporting Materials, and Transparent Silver Nanowire Electrodes in Organic Solar Cells
指導教授(中文):林皓武
指導教授(外文):Lin, Hao-Wu
口試委員(中文):汪根欉
吳忠幟
吳志毅
陳俐吟
林皓武
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031590
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:243
中文關鍵詞:有機太陽能電池光電元件有機材料
外文關鍵詞:organic solar cellphotovoltaic deviceorganic material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:173
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文研究不同的有機小分子,在真空蒸鍍製程下太陽能電池的光電特性及元件結構優化。
首先,介紹有機太陽能電池的歷史及目前發展現況,接著講解有機太陽能電池的運作機制、有機材料準備與分析、元件量測分析、元件結構種類。
論文的第二部分,介紹一系列小分子donor材料的基本光學性質,及有機太陽能電池元件的光電特性分析,針對目前有機小分子donor的發展進行文獻回顧,接著再探討與本實驗相關的有機小分子donor。在對稱小分子中,acceptor-acceptor-donor-acceptor-acceptor (A-A-D-A-A) 分子結構型態的PyCN,與C70以體積比1.5:1的共蒸鍍比例所製程的平面混合型異質接面結構元件效率最高,達4.3% ,元件表現為開路電壓 (Voc) 0.95 V、短路電流 (Jsc) 12.50 mA/cm2 、填充因子 (F.F.) 0.37。而在非對稱的小分子中我們使用donor-acceptor-acceptor (D-A-A) 分子結構型態的新型有機材料TDP搭配C70以體積比1:2的共蒸鍍比例所製程的平面混合型異質接面結構元件能量轉換效率最高,達5.6% ,元件表現為Voc 0.94 V、Jsc 11.34 mA/cm2、F.F. 0.52。
論文第三部分,將探討以不同電子傳輸層材料對有機太陽能電池元件表現的影響,我們發現TmPyPB具有熱穩定性佳、電子遷移率快 (10-3 cm2 V-1 s-1) 等優點,且應用於有機太陽能電池上也較BCP元件有更長的壽命,使TmPyPB為一個極合適的電子傳輸材料。在元件量測方面,我們也用交流阻抗頻譜分析,得到TmPyPB的元件有最小的交流阻抗。
論文的第四部份,我們用奈米銀線取代ITO進行一系列的濕式製程有機太陽能電池製作與分析,在P3HT:PCBM的材料系統上,已經達到與ITO元件相同的表現 (能量轉換效率4%)。
論文的第五部分,我們將簡介物理氣相鍍膜法,並以DBP進行初期單層膜與元件測試。
In this thesis, I focus on the material characterization and the device optimization of small molecule organic solar cells (SMOSCs).
In the first part, I briefly review the history and development of organic solar cells (OSCs), followed by working mechanisms, material preparation, device structures and measurement of OSCs.
In the second part of thesis, before evaluting new donor compounds for SMOSCs, I review some previous reports of SMOSCs employing symmetrical or unsymmertrical small molecular donors. Among our symmetrical donor compounds, PyCN, a donor with the acceptor-acceptor-donor-acceptor-acceptor (A-A-D-A-A) molecular structure, shows the best performance in SMOSCs by utilizing the planar mixed heterojunction (PMHJ) strcuture. The optimized blend ratio is PyCN:C70 = 1.5:1 (by volume), giving a power conversion efficiency (PCE) of up to 4.3% with an open circuit voltage (Voc) of 0.95 V, short circuit current density (Jsc) of 12.50 mA/cm2, fill factor (F.F.) of 0.37. On the other hand, TDP with donor-acceptor-acceptor (D-A-A) molecular structures shows the most promising characteristics among our unsymmetrical donor systems. The TDP:C70 (1:2) PMHJ device exhibits the best performance of a PCE up to 5.6% with a Voc of 0.94 V, Jsc of 11.34 mA/cm2, F.F. of 0.52.
In the third part, the electron transporting materials, TmPyPB, B3PyPB, BCP, BP4mPy, HATCN, DPPS, ET-7 and TC-1108 had been examined for the role of electron transporting layer (ETL) in OSCs. Among them, TmPyPB possesses the advantages of good thermal stability and high electron mobility, which make it a good ETL candidate for OSCs. In the long-term light soaking test, the TmPyPB-based cells also showed longer lifetime and less deterioration than the tranditional BCP-based cells. At the last part of this section, by using AC impedance analysis, I show that the TmPyPB-based cells exhibit the lowest AC resistance among all devices.
In the fourth part, silver nanowire (AgNW) was used to replace indium tin oxide (ITO) as a transparent electrode for the OSCs. The P3HT:PCBM OSCs employing AgNW show a PCE up to 4%, which is highly comparable to the ITO-based reference cells.
In the last part, I developed a physical vapor deposition technique for solar active layer deposition. In the priliminary test, DBP thin films and the bilayer heterojunction solar cells were fabricated using this deposition method.
摘要 I
Abstract III
目錄 V
分子式目錄 XII
表目錄 XIV
圖目錄 XVI

Chapter 1 緒論 1
1-1前言 1
1-2太陽能電池發展 1
1-3有機太陽能電池發展 2
1-4論文結構 7

Chapter 2 有機太陽能電池工作原理與特性量測 8
2-1太陽光光譜 8
2-2有機太陽能電池運作機制 10
2-3有機太陽能電池光電特性 13
2-3.1開路電壓 (open circuit voltage, Voc) 13
2-3.2短路電流 (short circuit current, Jsc) 13
2-3.3填充因子 (fill factor, F.F.) 13
2-3.4光電轉換效率 (power conversion efficiency, PCE) 14
2-3.4外部量子效率 (external quantum efficiency, E.Q.E.) 14

2-4有機太陽能電池元件結構 16
2-4.1主動層結構不同分為 16
2-4.2載子傳輸方向不同分為 16
2-4.3串接式結構(tandem cell) 17
2-5材料的準備與分析 19
2-5.1材料的純化 19
2-5.2光物理性質量測 19
2-6量測 20
2-6.1 J-V特性曲線量測 20
2-6.2不同光源強度下J-V特性曲線量測 20
2-6.3外部量子效率量測 20
2-6.4交流阻抗頻譜量測 21

Chapter 3 真空蒸鍍製程新穎小分子太陽能電池 22
3-1對稱小分子發展及簡介 22
3-1.1 Oligothiophenes 22
3-1.2 BODIPY 23
3-1.3 Triphenylamine (TPA) 衍生物 23
3-1.4 Tetraphenyldibenzoperiflanthene (DBP) 24
3-1.5 Squaraine 24
3-1.6 Dithienosilole為中心之對稱分子 25

3-2對稱小分子材料基本光電與元件特性 30
3-2.1 BCNDTS與BDCDTS 30
3-2.1.1 BCNDTS與BDCDTS光物理性質 30
3-2.1.1.1紫外光-可見光吸收光譜 30
3-2.1.1.2光學係數 30
3-2.1.1.3光電子頻譜 30
3-2.1.2 BCNDTS與BDCDTS有機太陽能電池 31
3-2.1.2.1 BCNDTS搭配C60之雙層平面型異質接面元件 31
3-2.1.2.2 BCNDTS搭配C70之雙層平面型異質接面元件 32
3-2.1.2.3 BCNDTS搭配C60之平面混合型異質接面元件 32
3-2.1.2.4 BCNDTS搭配C70之平面混合型異質接面元件 33
3-2.1.2.5改變BCNDTS與C70混合比例之平面混合型異質接面元件 33
3-2.1.2.6 BDCDTS搭配C60之雙層平面型異質接面元件 34
3-2.2 CNBTsDTP與CNBTtDTP 49
3-2.2.1 CNBTsDTP與CNBTtDTP光物理性質 49
3-2.2.1.1紫外光-可見光吸收光譜 49
3-2.2.1.2光學係數 49
3-2.2.1.3光電子頻譜 49
3-2.2.2 CNBTsDTP與CNBTtDTP有機太陽能電池 50
3-2.2.2.1改變CNBTsDTP與C70混合比例之平面混合型異質接面元件 50
3-2.2.2.2 CNBTtDTP搭配C60之雙層平面型異質接面元件 51
3-2.2.2.3改變CNBTtDTP與C70混合比例之平面混合型異質接面元件 52
3-2.2.3 CNBTtDTP近紅外光有機發光二極體 53
3-2.2.3.1近紅外光有機發光二極體發展 53
3-2.2.3.2 CNBTtDTP摻雜在Alq3之近紅外光有機發光二極體 54
3-2.2.3.3 CNBTtDTP摻雜在TPBi之近紅外光有機發光二極體 55
3-2.3 PyCN 74
3-2.3.1 PyCN光物理性質 74
3-2.3.1.1紫外光-可見光吸收光譜 74
3-2.3.1.2光學係數 74
3-2.3.1.3光電子頻譜 74
3-2.3.2 PyCN有機太陽能電池 75
3-2.3.2.1 PyCN搭配C60之雙層平面型異質接面元件 75
3-2.3.2.2 PyCN與C60之SCLC元件 76
3-2.3.2.3改變PyCN與C70混合比例之平面混合型異質接面元件 77
3-2.3.2.4 PyCN搭配C60雙層平面串聯結構元件 78

3-3非對稱小分子發展及簡介 93
3-3.1 Merocyanine dyes 93
3-3.2 TPDCDTS 93
3-3.3 DTDCTB, DTDCPB, DPDCPB, DPDCTB 93
3-3.4 DTDCTP 94
3-3.5 InTTCz, InTTD, InCNTTD 94

3-4非對稱小分子材料基本光電與元件特性 97
3-4.1 HIL1 97
3-4.1.1 HIL1光物理性質 97
3-4.1.1.1紫外光-可見光吸收光譜 97
3-4.1.1.2光學係數 97
3-4.1.1.3光電子頻譜 97
3-4.1.2 HIL1有機太陽能電池 97
3-4.1.2.1改變HIL1與C70混合比例之平面混合型異質接面元件 97
3-4.1.2.2最佳混合比例下,改變HIL1與C70混合層厚度之平面混合型異質接面元件 98
3-4.2 DP系列小分子 (DP、TDP、ADP) 106
3-4.2.1 DP系列小分子 (DP、TDP、ADP)光物理性質 106
3-4.2.1.1紫外光-可見光吸收光譜 106
3-4.2.1.2光學係數 106
3-4.2.1.3光電子頻譜 107
3-4.2.2 DP系列小分子 (DP、TDP、ADP)有機太陽能電池 107
3-4.2.2.1改變DP與C70混合比例之平面混合型異質接面元件 107
3-4.2.2.2改變TDP與C70混合比例之平面混合型異質接面元件 108
3-4.2.2.3最佳混合比例下,改變TDP與C70混合層厚度之平面混合型異質接面元件 109
3-4.2.2.4改變ADP與C70混合比例之平面混合型異質接面元件 109
3-4.3 DB系列小分子 (DB、TDB、ADB) 125
3-4.3.1 DB系列小分子 (DB、TDB、ADB)光物理性質 125
3-4.3.1.1紫外光-可見光吸收光譜 125
3-4.3.1.2光學係數 125
3-4.3.1.3光電子頻譜 125
3-4.3.2 DB系列小分子 (DB、TDB、ADB)有機太陽能電池 126
3-4.3.2.1改變DB與C70混合比例之平面混合型異質接面元件 126
3-4.3.2.2改變TDB與C70混合比例之平面混合型異質接面元件與TDB搭配C70之雙層平面型異質接面元件 127
3-4.3.2.3改變混合層厚度之TDB搭配C70平面混合型異質接面元件 (TDB:C70 = 1:1.5) 128
3-4.3.2.4改變混合層厚度之ADB搭配C70平面混合型異質接面元件 (ADB:C70 = 1:1.5) 129
3-4.4 NTLC 146
3-4.4.1 NTLC光物理性質 146
3-4.4.1.1紫外光-可見光吸收光譜 146
3-4.4.1.2光學係數 146
3-4.4.1.3光電子頻譜 146
3-4.4.2 NTLC有機太陽能電池 146
3-4.5 OK 150
3-4.5.1 OK光物理性質 150
3-4.5.1.1紫外光-可見光吸收光譜 150
3-4.5.1.2光學係數 150
3-4.5.1.3光電子頻譜 150
3-4.5.2 OK有機太陽能電池 150
3-4.5.2.1改變OK與C70混合比例之平面混合型異質接面元件 150

3-5結論 157

Chapter 4 電子傳輸材料研究與應用 158
4-1簡介與文獻回顧 158
4-2電子傳輸材料基本性質 161
4-2.1光學係數 161
4-2.2電子遷移率與分子能階 161
4-3不同能階型態電子傳輸層之有機太陽能電池 165
4-3.1以BP4mPy為電子傳輸層之有機太陽能電池 165
4-3.2以HATCN為電子傳輸層之有機太陽能電池 166
4-4電子傳輸材料之熱穩定性研究 172
4-4.1固態薄膜熱穩定性 172
4-4.2 TmPyPB為電子傳輸層之有機太陽能電池 172
4-4.2.1不同TmPyPB厚度之DTDCTB搭配C60平面雙層型異質接面元件 172
4-4.2.2不同DTDCTB與C70混合層厚度(DTDCTB:C70=1:1)之平面雙層型異質接面元件 173
4-4.2.3最佳DTDCTB與C70混合比例(DTDCTB:C70=1:1.6)之平面雙層型異質接面元件 174
4-4.2.4 TmPyPB與BCP元件熱穩定性 175
4-4.2.5 TmPyPB與BCP元件light soaking實驗 175

4-5電子傳輸材料之電子遷移率研究 186
4-5.1 B3PyPB有機太陽能電池 186
4-5.2 DPPS有機太陽能電池 187
4-5.3交流阻抗頻譜量測與分析 188
4-6其他電子傳輸材料 197
4-6.1 ET-7有機太陽能電池 197
4-6.2 TC-1108有機太陽能電池 198
4-7結論 205

Chapter 5 奈米銀線之有機太陽能電池應用 206
5-1簡介與文獻回顧 206
5-2 P3HT:PCBM有機太陽能電池 208
5-2.1調整奈米銀線濃度 208
5-2.2調整主動層厚度 209
5-2.3調整PEDOT:PSS厚度 210
5-2.4調整solvent annealing時間 211
5-2.5調整ZnO厚度 212
5-3 PBDTTT-C-T:PC71BM有機太陽能電池 220
5-4 DBP:C60有機太陽能電池 223
5-5結論 225
Chapter 6 物理氣相鍍膜法 226
6-1簡介與文獻回顧 226
6-2物理氣相鍍膜─DBP薄膜 227
6-3物理氣相鍍膜─DBP有機太陽能電池 230
6-4結論 232

Chapter 7 未來展望 233
本論文產出之相關期刊著作 234
參考文獻 235
[1] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Nature. 2008, 454, 816.
[2] J. Kruger, Ecole Polytechnique Fédérale de Lausanne. 2003, Ph. D.,
[3] J. Zhao, A. Wang, M. A. Green, Res. Appl. 1999, 7, 471.
[4] O. Schultz, W. Glunz S, G. P. Willeke, Res. Appl. 2004, 12, 553.
[5] X. Zhang, Sol. Energy Mater. Sol. Cells. 2004, 81, 197.
[6] I. Repins, M. Contreras, Y. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. McCandless, R. Noufi, 33th IEEE Photovoltaics Specialists Conference Record. 2008,
[7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovoltaics. 2009, 17, 320.
[8] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc. 1993, 115, 6382.
[9] M. K. Nazeeruddin, P. Péchy, M. Grätzel, Chem. Commun. 1997, 1705.
[10] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, M. Gratzel, Inorg. Chem. 1999, 38, 6298.
[11] H. J. Snaith, Adv. Funct. Mater. 2010, 20, 13.
[12] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 2001, 123, 1613.
[13] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, M. Grätzel, Adv. Mater. 2004, 16, 1806.
[14] J. H. Yum, I. Jung, C. Baik, J. Ko, M. K. Nazeeruddin, M. Gratzel, Energy Environ. Sci. 2009, 2, 100.
[15] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, M. Grätzel, ACS Nano. 2009, 3, 3103.
[16] A. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano. 2013, 7, 4569.
[17] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature Photon. 2012, 6, 593.
[18] D. Kearns, M. Calvin, The Journal of Chemical Physics. 1958, 29, 950.
[19] B. R. Weinberger, M. Akhtar, S. C. Gau, Synth. Met. 1982, 4, 187.
[20] S. Glenis, G. Tourillon, F. Garnier, Thin Solid Films. 1986, 139, 221.
[21] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[22] J. J. M. Halls, C. A. Walsh, N. Greenham, C, E. A. Marseglia, R. Friend, H, S. C. Moratti, A. Holmes, B, Nature. 1995, 376, 498.
[23] J. G. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 84, 3013.
[24] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 1995, 270, 1789.
[25] G. Perrier, R. de Bettignies, S. Berson, N. Lemaître, S. Guillerez, Sol. Energy Mater. Sol. Cells. 2012, 101, 210.
[26] W. Gaynor, G. F. Burkhard, M. D. McGehee, P. Peumans, Adv. Mater. 2011, 23, 2905.
[27] L. L. Chang, H. W. A. Lademann, J. B. Bonekamp, K. Meerholz, A. J. Moule, Adv. Funct. Mater. 2011, 21, 1779.
[28] J.-H. Chang, Y.-H. Chen, H.-W. Lin, Y.-T. Lin, H.-F. Meng, E.-C. Chen, Org. Electron. 2012, 13, 705.
[29] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66.
[30] J. Hatano, N. Obata, S. Yamaguchi, T. Yasuda, Y. Matsuo, J. Mater. Chem. 2012, 22, 19258.
[31] P. Dutta, W. Yang, W.-H. Lee, I. N. Kang, S.-H. Lee, J. Mater. Chem. 2012, 22, 10840.
[32] G. D. Sharma, J. A. Mikroyannidis, R. Kurchania, K. R. J. Thomas, J. Mater. Chem. 2012, 22, 13986.
[33] Y. S. Hsiao, W. T. Whang, S. C. Suen, J. Y. Shiu, C. P. Chen, Nanotechnology. 2008, 19, 415603.
[34] J. Jo, S.-I. Na, S.-S. Kim, T.-W. Lee, Y. Chung, S.-J. Kang, D. Vak, D.-Y. Kim, Adv. Funct. Mater. 2009, 19, 2398.
[35] Y. Gao, MAT. SCI. ENG. R. 2010, 68, 39.
[36] P. G. Karagiannidis, N. Kalfagiannis, D. Georgiou, A. Laskarakis, N. A. Hastas, C. Pitsalidis, S. Logothetidis, J. Mater. Chem. 2012, 22, 14624.
[37] M. D. Perez, C. Borek, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2009, 131, 9281.
[38] W. L. Leong, S. R. Cowan, A. J. Heeger, Adv. Energy Mater. 2011, 1, 517.
[39] C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson, J. R. Durrant, Proc Natl Acad Sci U S A. 2010, 107, 16448.
[40] C. K. Renshaw, C. W. Schlenker, M. E. Thompson, S. R. Forrest, Phys. Rev. B. 2011, 84,
[41] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
[42] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater. 2008, 20, 579.
[43] H. GmbH, 2013, (http://www.heliatek.com).
[44] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
[45] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Körner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß, C. Uhrich, M. Pfeiffer, P. Bäuerle, Adv. Funct. Mater. 2011, 21, 897.
[46] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bauerle, Chem. Commun. 2011, 47, 1982.
[47] D. Wynands, B. Männig, M. Riede, K. Leo, E. Brier, E. Reinold, P. Bäuerle, J. Appl. Phys. 2009, 106, 054509.
[48] K. Schulze, M. Riede, E. Brier, E. Reinold, P. Bauerle, K. Leo, J. Appl. Phys. 2008, 104,
[49] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bäuerle, Adv. Mater. 2006, 18, 2872.
[50] R. Schueppel, K. Schmidt, C. Uhrich, K. Schulze, D. Wynands, J. Brédas, E. Brier, E. Reinold, H. B. Bu, P. Baeuerle, B. Maennig, M. Pfeiffer, K. Leo, Phys. Rev. B. 2008, 77,
[51] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Korner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, P. Bauerle, J. Am. Chem. Soc. 2012, 134, 11064.
[52] T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, Chem. Commun. 2009, 1673.
[53] T. Rousseau, A. Cravino, E. Ripaud, P. Leriche, S. Rihn, A. De Nicola, R. Ziessel, J. Roncali, Chem. Commun. 2010, 46, 5082.
[54] H. Y. Lin, W. C. Huang, Y. C. Chen, H. H. Chou, C. Y. Hsu, J. T. Lin, H. W. Lin, Chem. Commun. 2012, 48, 8913.
[55] C. He, Q. He, Y. He, Y. Li, F. Bai, C. Yang, Y. Ding, L. Wang, J. Ye, Sol. Energy Mater. Sol. Cells. 2006, 90, 1815.
[56] H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, Adv. Mater. 2011, 23, 1554.
[57] M. Hirade, C. Adachi, Appl. Phys. Lett. 2011, 99, 153302.
[58] Z. Wang, D. Yokoyama, X.-F. Wang, Z. Hong, Y. Yang, J. Kido, Energy Environ. Sci. 2013, 6, 249.
[59] X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann, S. R. Forrest, Appl. Phys. Lett. 2013, 102, 073302.
[60] G. Wei, X. Xiao, S. Wang, J. D. Zimmerman, K. Sun, V. V. Diev, M. E. Thompson, S. R. Forrest, Nano Lett. 2011, 11, 4261.
[61] U. Mayerhoffer, K. Deing, K. Gruss, H. Braunschweig, K. Meerholz, F. Wurthner, Angew. Chem. Int. Ed. 2009, 48, 8776.
[62] D. Bagnis, L. Beverina, H. Huang, F. Silvestri, Y. Yao, H. Yan, G. A. Pagani, T. J. Marks, A. Facchetti, J. Am. Chem. Soc. 2010, 132, 4074.
[63] S. Wang, L. Hall, V. V. Diev, R. Haiges, G. Wei, X. Xiao, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Chem. Mater. 2011, 23, 4789.
[64] F. Silvestri, M. D. Irwin, L. Beverina, A. Facchetti, G. A. Pagani, T. J. Marks, J. Am. Chem. Soc. 2008, 130, 17640.
[65] K. Y. Law, J. Phys. Chem. 1987, 91, 5184.
[66] S. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. Wei, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 2009, 94, 233304.
[67] G. Wei, S. Wang, K. Renshaw, M. E. Thompson, S. R. Forrest, ACS Nano. 2010, 4, 1927.
[68] G. Wei, S. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 2011, 1, 184.
[69] G. Chen, H. Sasabe, Z. Wang, X. F. Wang, Z. Hong, Y. Yang, J. Kido, Adv. Mater. 2012, 24, 2768.
[70] J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li, Y. Chen, Chem. Mater. 2011, 23, 4666.
[71] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Nat. Mater. 2012, 11, 44.
[72] A. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, A. J. Heeger, Adv. Mater. 2013, 25, 2397.
[73] T.-C. Lee, J.-Y. Hung, Y. Chi, Y.-M. Cheng, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang, C.-C. Wu, Adv. Funct. Mater. 2009, 19, 2639.
[74] G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma, Z. Y. Wang, Chem. Mater. 2008, 20, 6208.
[75] Y. Sun, C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, J. Brooks, J. J. Brown, S. R. Forrest, Appl. Phys. Lett. 2007, 90, 213503.
[76] K. K. H. Chan, S. W. Tsang, H. K. H. Lee, F. So, S. K. So, Org. Electron. 2012, 13, 850.
[77] C. H. Cheung, W. J. Song, S. K. So, Org. Electron. 2010, 11, 89.
[78] N. M. Kronenberg, V. Steinmann, H. Burckstummer, J. Hwang, D. Hertel, F. Wurthner, K. Meerholz, Adv. Mater. 2010, 22, 4193.
[79] V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Bürckstümmer, E. V. Tulyakova, F. Würthner, Adv. Energy Mater. 2011, 1, 888.
[80] H. W. Lin, L. Y. Lin, Y. H. Chen, C. W. Chen, Y. T. Lin, S. W. Chiu, K. T. Wong, Chem. Commun. 2011, 47, 7872.
[81] L. Y. Lin, Y. H. Chen, Z. Y. Huang, H. W. Lin, S. H. Chou, F. Lin, C. W. Chen, Y. H. Liu, K. T. Wong, J. Am. Chem. Soc. 2011, 133, 15822.
[82] Y. H. Chen, L. Y. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. Wen, D. J. Miller, S. B. Darling, J. Am. Chem. Soc. 2012, 134, 13616.
[83] S. W. Chiu, L. Y. Lin, H. W. Lin, Y. H. Chen, Z. Y. Huang, Y. T. Lin, F. Lin, Y. H. Liu, K. T. Wong, Chem. Commun. 2012, 48, 1857.
[84] M. Hirade, T. Yasuda, C. Adachi, J. Phys. Chem. C. 2013, 117, 4986.
[85] B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2011, 98, 243307.
[86] P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
[87] C. Falkenberg, C. Uhrich, S. Olthof, B. Maennig, M. K. Riede, K. Leo, J. Appl. Phys. 2008, 104, 034506.
[88] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 2007, 107, 1233.
[89] C. K. Renshaw, C. W. Schlenker, M. E. Thompson, S. R. Forrest, Phys. Rev. B. 2011, 84, 045315.
[90] J. Yu, N. Wang, Y. Zang, Y. Jiang, Sol. Energy Mater. Sol. Cells. 2011, 95, 664.
[91] J.-H. Lee, S. Lee, J.-B. Kim, J. Jang, J.-J. Kim, J. Mater. Chem. 2012, 22, 15262.
[92] T. V. Pho, H. Kim, J. H. Seo, A. J. Heeger, F. Wudl, Adv. Funct. Mater. 2011, 21, 4338.
[93] Z. Chen, F. Ding, F. Hao, Z. Bian, B. Ding, Y. Zhu, F. Chen, C. Huang, Org. Electron. 2009, 10, 939.
[94] H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, Thin Solid Films. 2008, 516, 5669.
[95] A. Haldi, B. Domercq, B. Kippelen, R. D. Hreha, J. Y. Cho, S. R. Marder, Appl. Phys. Lett. 2008, 92, 253502.
[96] T. Earmme, S. A. Jenekhe, J. Mater. Chem. 2012, 22, 4660.
[97] Y. Tao, Q. Wang, C. Yang, C. Zhong, J. Qin, D. Ma, Adv. Funct. Mater. 2010, 20, 2923.
[98] D. Yokoyama, Z. Qiang Wang, Y.-J. Pu, K. Kobayashi, J. Kido, Z. Hong, Sol. Energy Mater. Sol. Cells. 2012, 98, 472.
[99] R. F. Bailey-Salzman, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2007, 91, 013508.
[100] D. Placencia, W. Wang, R. C. Shallcross, K. W. Nebesny, M. Brumbach, N. R. Armstrong, Adv. Funct. Mater. 2009, 19, 1913.
[101] H. W. Lin, L. Y. Lin, Y. H. Chen, C. W. Chen, Y. T. Lin, S. W. Chiu, K. T. Wong, Chem. Commun. 2011, 47, 7872.
[102] L. Y. Lin, C. W. Lu, W. C. Huang, Y. H. Chen, H. W. Lin, K. T. Wong, Org. Lett. 2011, 13, 4962.
[103] S.-J. Su, T. Chiba, T. Takeda, J. Kido, Adv. Mater. 2008, 20, 2125.
[104] H. Sasabe, J. Kido, Chem. Mater. 2011, 23, 621.
[105] L. Xiao, B. Qi, X. Xing, L. Zheng, S. Kong, Z. Chen, B. Qu, L. Zhang, Z. Ji, Q. Gong, J. Mater. Chem. 2011, 21, 19058.
[106] C.-H. Chang, C.-L. Ho, Y.-S. Chang, I. C. Lien, C.-H. Lin, Y.-W. Yang, J.-L. Liao, Y. Chi, Journal of Materials Chemistry C. 2013, 1, 2639.
[107] D. Curiel, M. Más-Montoya, C.-H. Chang, P.-Y. Chen, C.-W. Tai, A. Tárraga, Journal of Materials Chemistry C. 2013, 1, 3421.
[108] M. Mauro, C. H. Yang, C. Y. Shin, M. Panigati, C. H. Chang, G. D'Alfonso, L. De Cola, Adv. Mater. 2012, 24, 2054.
[109] L. Xiao, S.-J. Su, Y. Agata, H. Lan, J. Kido, Adv. Mater. 2009, 21, 1271.
[110] S. Lee, J.-H. Lee, J.-H. Lee, J.-J. Kim, Adv. Funct. Mater. 2012, 22, 855.
[111] C. Falkenberg, S. Olthof, R. Rieger, M. Baumgarten, K. Muellen, K. Leo, M. Riede, Sol. Energy Mater. Sol. Cells. 2011, 95, 927.
[112] Y. Zhao, J. Chen, D. Ma, Appl. Phys. Lett. 2011, 99, 163303.
[113] Y. J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, J. Kido, Adv. Mater. 2012, 24, 1765.
[114] W.-Y. Hung, G.-M. Tu, S.-W. Chen, Y. Chi, J. Mater. Chem. 2012, 22, 5410.
[115] J. Lee, N. Chopra, S.-H. Eom, Y. Zheng, J. Xue, F. So, J. Shi, Appl. Phys. Lett. 2008, 93, 123306.
[116] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926.
[117] M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lau, S. T. Lee, J. Appl. Phys. 2006, 100, 094506.
[118] S. Noh, C. K. Suman, D. Lee, S. Kim, C. Lee, J. Nanosci. Nanotechnol. 2010, 10, 6815.
[119] J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, Y. Yang, Adv. Mater. 2012, 24, 5267.
[120] T. Kuwabara, C. Iwata, T. Yamaguchi, K. Takahashi, ACS Appl. Mater. Interfaces. 2010, 2, 2254.
[121] S. Ishihara, H. Hase, T. Okachi, H. Naito, J. Appl. Phys. 2011, 110, 036104.
[122] Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B. 2006, 110, 25210.
[123] Q. Wang, J. E. Moser, M. Gratzel, J. Phys. Chem. B. 2005, 109, 14945.
[124] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 2004, 84, 2433.
[125] J. Bisquert, M. Gratzel, Q. Wang, F. Fabregat-Santiago, J. Phys. Chem. B. 2006, 110, 11284.
[126] C.-C. Hsiao, A.-E. Hsiao, S.-A. Chen, Adv. Mater. 2008, 20, 1982.
[127] T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Jpn. J. Appl. Phys. 2008, 47, 8965.
[128] S. Ishihara, H. Hase, T. Okachi, H. Naito, Org. Electron. 2011, 12, 1364.
[129] T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Thin Solid Films. 2008, 517, 1331.
[130] A. n. Pitarch, G. Garcia-Belmonte, J. Bisquert, H. J. Bolink, J. Appl. Phys. 2006, 100, 084502.
[131] B. J. Leever, C. A. Bailey, T. J. Marks, M. C. Hersam, M. F. Durstock, Adv. Energy Mater. 2012, 2, 120.
[132] A. Guerrero, T. Ripolles-Sanchis, P. P. Boix, G. Garcia-Belmonte, Org. Electron. 2012, 13, 2326.
[133] F. Wang, L. Li, Q. Xu, D. Qian, S. Li, Z. a. Tan, Org. Electron. 2013, 14, 845.
[134] T. Kuwabara, Y. Kawahara, T. Yamaguchi, K. Takahashi, ACS Appl. Mater. Interfaces. 2009, 1, 2107.
[135] R. García-Valverde, J. A. Cherni, A. Urbina, Progress in Photovoltaics: Research and Applications. 2010, 18, 535.
[136] Y. Zhou, H. Cheun, S. Choi, W. J. Potscavage, C. Fuentes-Hernandez, B. Kippelen, Appl. Phys. Lett. 2010, 97, 153304.
[137] N. Espinosa, R. García-Valverde, A. Urbina, F. Lenzmann, M. Manceau, D. Angmo, F. C. Krebs, Sol. Energy Mater. Sol. Cells. 2012, 97, 3.
[138] M. Manceau, D. Angmo, M. Jørgensen, F. C. Krebs, Org. Electron. 2011, 12, 566.
[139] S.-I. Na, S.-S. Kim, J. Jo, D.-Y. Kim, Adv. Mater. 2008, 20, 4061.
[140] S. K. Hau, H.-L. Yip, J. Zou, A. K. Y. Jen, Org. Electron. 2009, 10, 1401.
[141] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano. 2010, 4, 43.
[142] Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, K. P. Loh, Adv. Mater. 2011, 23, 1514.
[143] M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science. 2005, 309, 1215.
[144] S. Kim, J. Yim, X. Wang, D. D. C. Bradley, S. Lee, J. C. deMello, Adv. Funct. Mater. 2010, 20, 2310.
[145] H. E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G. Amaratunga, M. Chhowalla, J. Mater. Chem. 2008, 18, 5909.
[146] J. Ajuria, I. Etxebarria, W. Cambarau, U. Muñecas, R. Tena-Zaera, J. C. Jimeno, R. Pacios, Energy Environ. Sci. 2011, 4, 453.
[147] H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Adv. Funct. Mater. 2011, 21, 1709.
[148] J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H. Uchida, K. Shinozaki, J. Mater. Chem. 2012, 22, 23561.
[149] A. Kim, Y. Won, K. Woo, C. H. Kim, J. Moon, ACS Nano. 2013, 7, 1081.
[150] A. R. Madaria, A. Kumar, F. N. Ishikawa, C. W. Zhou, Nano Res. 2010, 3, 564.
[151] L. Li, Z. Yu, W. Hu, C. H. Chang, Q. Chen, Q. Pei, Adv. Mater. 2011, 23, 5563.
[152] L. Li, Z. Yu, C. H. Chang, W. Hu, X. Niu, Q. Chen, Q. Pei, PCCP. 2012, 14, 14249.
[153] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 2011, 23, 664.
[154] K.-H. Choi, J. Kim, Y.-J. Noh, S.-I. Na, H.-K. Kim, Sol. Energy Mater. Sol. Cells. 2013, 110, 147.
[155] F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, R. H. Friend, Appl. Phys. Lett. 2011, 99, 183307.
[156] D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, J. C. de Mello, Adv. Mater. 2011, 23, 4371.
[157] W. Gaynor, J. Y. Lee, P. Peumans, ACS Nano. 2010, 4, 30.
[158] R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G. Li, Y. Yang, ACS Nano. 2011, 5, 9877.
[159] T. Stubhan, J. Krantz, N. Li, F. Guo, I. Litzov, M. Steidl, M. Richter, G. J. Matt, C. J. Brabec, Sol. Energy Mater. Sol. Cells. 2012, 107, 248.
[160] J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera, R. Pacios, Sol. Energy Mater. Sol. Cells. 2012, 102, 148.
[161] L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, W. You, ACS Appl. Mater. Interfaces. 2011, 3, 4075.
[162] M. Reinhard, R. Eckstein, A. Slobodskyy, U. Lemmer, A. Colsmann, Org. Electron. 2013, 14, 273.
[163] J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, C. J. Brabec, Adv. Funct. Mater. 2013, 23, 1711.
[164] C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, K. Leo, Org. Electron. 2013, 14, 143.
[165] D. Y. Choi, H. W. Kang, H. J. Sung, S. S. Kim, Nanoscale. 2013, 5, 977.
[166] X. Li, W. C. Choy, L. Huo, F. Xie, W. E. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 2012, 24, 3046.
[167] F. Xie, W. C. Choy, C. Wang, X. Li, S. Zhang, J. Hou, Adv. Mater. 2013, 25, 2051.
[168] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697.
[169] S. Jo, H. Yoshikawa, A. Fujii, M. Takenaga, Synth. Met. 2005, 150, 223.
[170] Q. Yu, L. Dang, S. Black, H. Wei, J. Cryst. Growth. 2012, 340, 209.
[171] X. Zeng, Y. Qiu, J. Qiao, G. Dong, L. Wang, Appl. Surf. Sci. 2007, 253, 3581.
[172] S. Jo, H. Yoshikawa, A. Fujii, M. Takenaga, Appl. Surf. Sci. 2006, 252, 3514.
[173] R. A. Laudise, C. Kloc, P. G. Simpkins, T. Siegrist, J. Cryst. Growth. 1998, 187, 449.
[174] M. Hirade, H. Nakanotani, M. Yahiro, C. Adachi, ACS Appl. Mater. Interfaces. 2011, 3, 80.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *