|
1. Mitchell, K., et al. Single and tandem junction CuInSe2 cell and module technology. in Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE. 1988. 2. Green, M.A., et al., Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 2012. 20(5): p. 606-614. 3. Wei, S.H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218. 4. Mungan, E.S., X.F. Wang, and M.A. Alam, Modeling the Effects of Na Incorporation on CIGS Solar Cells. Ieee Journal of Photovoltaics, 2013. 3(1): p. 451-456. 5. Rudigier, E., et al., Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1954-1960. 6. Yoon, J.-h., et al., Optical Diagnosis of the Microstructure of Mo Back Contact for CIGS Solar Cell. Meeting Abstracts, 2009. MA2009-02(9): p. 763. 7. Minemoto, T., et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 83-88. 8. Nakada, T., et al., High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 255-260. 9. Nakada, T. and M. Mizutani, 18% efficiency Cd-free Cu(In, Ga)Se-2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Japanese Journal of Applied Physics Part 2-Letters, 2002. 41(2B): p. L165-L167. 10. Minemoto, T., A. Okamoto, and H. Takakura, Sputtered ZnO-based buffer layer for band offset control in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2011. 519(21): p. 7568-7571. 11. Cho, D.-H., et al., Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films, 2012. 520(6): p. 2115-2118. 12. Hersh, P.A., et al. Field assisted simultaneous synthesis and transfer FASST® method used in conjunction with liquid precursors to produce CIGS solar cells. in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE. 2010. 13. Nakamura, N., et al., The Influence of the Si-H$_{2}$ Bond on the Light-Induced Effect in a-Si Films and a-Si Solar Cells. Japanese Journal of Applied Physics. 28(Copyright (C) 1989 Publication Board, Japanese Journal of Applied Physics): p. 1762. 14. Otte, K., et al., Hydrogen in CuInSe2. Journal of Physics and Chemistry of Solids, 2003. 64(9–10): p. 1641-1647. 15. Kılıç, Ç. and A. Zunger, n-type doping and passivation of CuInSe_{2} and CuGaSe_{2} by hydrogen. Physical Review B, 2003. 68(7): p. 075201. 16. Lee, D.W., et al., Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films. Thin Solid Films, 2012. 520(20): p. 6382-6385. 17. Bob, B., et al., The Development of Hydrazine-Processed Cu(In,Ga)(Se,S)2 Solar Cells. Advanced Energy Materials, 2012. 2(5): p. 504-522. 18. Wei, S.-H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe[sub 2]. Journal of Applied Physics, 1999. 85(10): p. 7214-7218. 19. Jiang, C.S., et al., Does the local built-in potential on grain boundaries of Cu(In,Ga)Se[sub 2] thin films benefit photovoltaic performance of the device? Applied Physics Letters, 2004. 85(13): p. 2625-2627. 20. Yue-Shun, S., et al. Investigation of sodium effects on CIGS thin films deposited by sputtering from a single quaternary. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. 21. Lundberg, O., M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 2005. 480–481(0): p. 520-525. 22. Shirakata, S. and T. Nakada, Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells. Thin Solid Films, 2007. 515(15): p. 6151-6154. 23. Heath, J.T., J.D. Cohen, and W.N. Shafarman, Bulk and metastable defects in CuIn[sub 1 - x]Ga[sub x]Se[sub 2] thin films using drive-level capacitance profiling. Journal of Applied Physics, 2004. 95(3): p. 1000-1010. 24. Baji, Z., et al., Post-selenization of stacked precursor layers for CIGS. Vacuum, 2013. 92: p. 44-51. 25. Guillén, C., M.A. Martı́nez, and J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films, 1998. 335(1–2): p. 37-42. 26. Ishizuka, S., et al., Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se[sub 2] thin films. Journal of Applied Physics, 2009. 106(3): p. 034908-6. 27. Kohiki, S., et al., X-ray photoelectron spectroscopy of CuInSe_{2}. Physical Review B, 1992. 45(16): p. 9163-9168. 28. Hanket, G.M., et al., Incongruent reaction of Cu-(InGa) intermetallic precursors in H2Se and H2S. Journal of Applied Physics, 2007. 102(7). 29. Hanna, G., et al., Open circuit voltage limitations in CuIn1-xGaxSe2 thin-film solar cells - Dependence on alloy composition. Physica Status Solidi a-Applied Research, 2000. 179(1): p. R7-R8. 30. Asher, S., et al., Sodium diffusion, selenization, and microstructural effects associated with various molybdenum back contact layers for CIS-based solar cells, in 1994 Ieee First World Conference on Photovoltaic Energy Conversion/Conference Record of the Twenty Fourth Ieee Photovoltaic Specialists Conference-1994, Vols I and Ii1994, I E E E: New York. p. 164-167. 31. Sakurai, K., et al., Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1877-1880. 32. Kronik, L., D. Cahen, and H.W. Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1998. 10(1): p. 31-36. 33. Jiang, C.-S., et al., Direct evidence of a buried homojunction in Cu(In,Ga)Se[sub 2] solar cells. Applied Physics Letters, 2003. 82(1): p. 127-129. 34. Lee, D.Y., et al., Effect of Cu content on the photovoltaic properties of Cu(In,Ga)Se-2 solar cells prepared by the evaporation of binary selenide sources. Electronic Materials Letters, 2008. 4(1): p. 13-18. 35. Yan, Y., et al., Microstructure of surface layers in Cu(In,Ga)Se[sub 2] thin films. Applied Physics Letters, 2002. 81(6): p. 1008-1010. 36. Liao, D. and A. Rockett, Cu depletion at the CuInSe[sub 2] surface. Applied Physics Letters, 2003. 82(17): p. 2829-2831. 37. Rega, N., et al., Excitonic luminescence of Cu(In,Ga)Se2. Thin Solid Films, 2005. 480–481(0): p. 286-290. 38. Cheng, T.H., et al., Photoluminescence characterization and passivation of CIGS absorber, in Photovoltaics for the 21st Century 6, M. Tao, et al., Editors. 2011, Electrochemical Soc Inc: Pennington. p. 191-197. 39. Wei, L., et al., The influence of alloy phases in the precursors on the selenization reaction mechanisms. Journal of Physics D: Applied Physics, 2009. 42(12): p. 125303.
|