帳號:guest(3.128.201.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡凡
論文名稱(中文):氫氣輔助硒化大面積銅銦鎵硒太陽能電池製備及元件分析
論文名稱(外文):Efficiency enhancement of large area Cu(In,Ga)Se2 solar cell by hydrogen-assisted Se vapor selenization process
指導教授(中文):闕郁倫
沈昌宏
口試委員(中文):闕郁倫
沈昌宏
謝嘉民
王祥辰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031572
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:70
中文關鍵詞:銅銦鎵硒合金後硒化
相關次數:
  • 推薦推薦:0
  • 點閱點閱:594
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
為因應世界能源短缺,可重複使用、乾淨的能源為下一世代考量的重點。 CIGS為第二代薄膜太陽能電池,具有高吸收係數、能源回收期短短、成本低廉及高穩定性等競爭優勢。瑞士EMPA研究機構已發展出效率20.4%之高效率CIGS太陽能電池,其未來應用於市場之潛力十分龐大。
氫氣用於太陽能電池上早有文獻出現,有研究指出氫氣在a-Si太陽能電池上可增加其表現,在CIS上也被認為藉由離子佈質方式通入氫有助於改善PN接面或在非真空CIGS合成上應用,首先為製程上的方便及迅捷,如何能在不額外增加製程步驟及額外增加製程時間的前提下使氫氣直接與CIGS反應並提升效率,以及利用硒化製程做出共蒸鍍法才有的雙梯度能隙及增加鈉效應現象為此篇研究的重點。合金後硒化製程為大面積量產CIGS的主要方法,在硒化時氫氣及氮氣依比例運載硒蒸氣進入腔體與CIG前驅物進行硒化反應。氫氣及氮氣的比例控制在0%、5%、15%及25%,並依照標準製程完成電池。
效率顯示0%氫氣之效率最低,隨著氫氣比例的增加,在5%~15%時效率、填滿因子及開路電壓均可達到最佳的數值,但隨著氫氣超過15%,效率會隨之下降。材料分析部分,從CIGS薄膜SEM結果可發現:未通入氫氣的試片會影響CIGS/Mo接面造成試片效率的低落及短路。ESCA觀測到貧銅現象與效率呈現正相關,表面Na含量在15%時會達到極值且DLCP中可發現鈉效應現象的增加。LT-PL為探測CIGS缺陷的重要材料分析儀器之一,可在低溫環境下得到試片主要的缺陷種類。此次研究中發現到DAP1/BI比值中(相對強度)與效率呈現正相關,VSe在薄膜表面形成大量的結構使得本徵p-n結之形成,對於電子電洞分離不被缺陷捕捉有很大的貢獻,同時TEM-EDS分析發現同質接面變寬之現象,從中衍伸的電子電洞複合現象的減少造成p-n結優化的說法可從PL mapping中得知。
現行已開發出簡易及迅捷的氫氣輔助製程方式製備大面積(30cm*40cm)合金後硒化CIGS太陽能電池,並且成功達到10%之效率。此方法於工業應用上有十分龐大之潛力及前景。
摘要 3
Abstract I
誌謝 III
Contents目錄 IV
List of Figures VII
List of table IX
Chapter 1 Introduction 1
1.1. Preface 1
1.2. Basic principle and characteristic of solar cell 3
1.3. CIGS solar cell introduction 8
1.3.1. CIGS introduction and development potential 8
1.3.2. CIGS device structure 9
1.4. CIGS solar cell development 14
1.5. Paper review 21
Chapter 2 Experiment and Analysis Instrument 22
2.1. Fabrication instrument 22
2.1.1. In-line sputtering system 22
2.1.2. Large scale selenization furnace 23
2.2. Analysis instrument 23
2.2.1. Solar cell simulator system 23
2.2.2. Scanning electron microscope, SEM 26
2.2.3. Energy dispersive spectrometers, EDS 27
2.2.4. X-ray diffraction analysis, XRD 28
2.2.5. Raman scattering analysis, Raman 29
2.2.6. Photoluminescence system, PL 30
2.2.7. Time-Resolved Photoluminescence, TRPL 32
2.2.8. Drive-level capacitance profiling, DLCP 33
2.2.9. Electron Spectroscopy for Chemical Analysis, ESCA 34
2.2.10. Secondary ion mass spectrometry, SIMS 35
Chapter 3 Experimental 37
3.1. CIGS solar cell fabrication 37
3.1.1. Soda-lime glass cleaning 37
3.1.2. Mo electrode deposition 38
3.1.3. CIG precursor sputtering 39
3.1.4. CIGS selenization process 40
3.1.5. CdS buffer layer deposition 41
3.1.6. ZnO/ITO window layer and Al electrode fabrication 42
Chapter 4 Results and Discussion 43
4.1. CIGS thin film analysis 43
4.1.1. SEM analysis of microstructural and morphology 43
4.1.2. X-ray diffraction & Raman scattering spectrum analysis 45
4.1.3. ESCA analysis of surface composition 47
4.1.4. SIMS analysis of depth profiles of elemental distributions 50
4.2. CIGS solar cell analysis 52
4.2.1. DLCP analysis of carrier density 52
4.2.2. TEM&EDS analysis of CIGS/CdS interface 53
4.2.3. TRPL analysis of CIGS hetero-junction property 55
4.2.4. LT-PL analysis of CIGS defects 57
4.3. Electrical property of CIGS solar cell 59
4.3.1. Efficiency measurements of CIGS solar cell 59
4.4. Mechanism of CIGS with hydrogen treatment 61
4.4.1. Mechanism of CIGS with hydrogen treatment 61
Chapter 5 Conclusion 64
5.1. Conclusion 64
5.2. Future work 65
Reference 68


1. Mitchell, K., et al. Single and tandem junction CuInSe2 cell and module technology. in Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE. 1988.
2. Green, M.A., et al., Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 2012. 20(5): p. 606-614.
3. Wei, S.H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
4. Mungan, E.S., X.F. Wang, and M.A. Alam, Modeling the Effects of Na Incorporation on CIGS Solar Cells. Ieee Journal of Photovoltaics, 2013. 3(1): p. 451-456.
5. Rudigier, E., et al., Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1954-1960.
6. Yoon, J.-h., et al., Optical Diagnosis of the Microstructure of Mo Back Contact for CIGS Solar Cell. Meeting Abstracts, 2009. MA2009-02(9): p. 763.
7. Minemoto, T., et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 83-88.
8. Nakada, T., et al., High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 255-260.
9. Nakada, T. and M. Mizutani, 18% efficiency Cd-free Cu(In, Ga)Se-2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Japanese Journal of Applied Physics Part 2-Letters, 2002. 41(2B): p. L165-L167.
10. Minemoto, T., A. Okamoto, and H. Takakura, Sputtered ZnO-based buffer layer for band offset control in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2011. 519(21): p. 7568-7571.
11. Cho, D.-H., et al., Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films, 2012. 520(6): p. 2115-2118.
12. Hersh, P.A., et al. Field assisted simultaneous synthesis and transfer FASST® method used in conjunction with liquid precursors to produce CIGS solar cells. in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE. 2010.
13. Nakamura, N., et al., The Influence of the Si-H$_{2}$ Bond on the Light-Induced Effect in a-Si Films and a-Si Solar Cells. Japanese Journal of Applied Physics. 28(Copyright (C) 1989 Publication Board, Japanese Journal of Applied Physics): p. 1762.
14. Otte, K., et al., Hydrogen in CuInSe2. Journal of Physics and Chemistry of Solids, 2003. 64(9–10): p. 1641-1647.
15. Kılıç, Ç. and A. Zunger, n-type doping and passivation of CuInSe_{2} and CuGaSe_{2} by hydrogen. Physical Review B, 2003. 68(7): p. 075201.
16. Lee, D.W., et al., Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se2 based thin films. Thin Solid Films, 2012. 520(20): p. 6382-6385.
17. Bob, B., et al., The Development of Hydrazine-Processed Cu(In,Ga)(Se,S)2 Solar Cells. Advanced Energy Materials, 2012. 2(5): p. 504-522.
18. Wei, S.-H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe[sub 2]. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
19. Jiang, C.S., et al., Does the local built-in potential on grain boundaries of Cu(In,Ga)Se[sub 2] thin films benefit photovoltaic performance of the device? Applied Physics Letters, 2004. 85(13): p. 2625-2627.
20. Yue-Shun, S., et al. Investigation of sodium effects on CIGS thin films deposited by sputtering from a single quaternary. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012.
21. Lundberg, O., M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 2005. 480–481(0): p. 520-525.
22. Shirakata, S. and T. Nakada, Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells. Thin Solid Films, 2007. 515(15): p. 6151-6154.
23. Heath, J.T., J.D. Cohen, and W.N. Shafarman, Bulk and metastable defects in CuIn[sub 1 - x]Ga[sub x]Se[sub 2] thin films using drive-level capacitance profiling. Journal of Applied Physics, 2004. 95(3): p. 1000-1010.
24. Baji, Z., et al., Post-selenization of stacked precursor layers for CIGS. Vacuum, 2013. 92: p. 44-51.
25. Guillén, C., M.A. Martı́nez, and J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films, 1998. 335(1–2): p. 37-42.
26. Ishizuka, S., et al., Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se[sub 2] thin films. Journal of Applied Physics, 2009. 106(3): p. 034908-6.
27. Kohiki, S., et al., X-ray photoelectron spectroscopy of CuInSe_{2}. Physical Review B, 1992. 45(16): p. 9163-9168.
28. Hanket, G.M., et al., Incongruent reaction of Cu-(InGa) intermetallic precursors in H2Se and H2S. Journal of Applied Physics, 2007. 102(7).
29. Hanna, G., et al., Open circuit voltage limitations in CuIn1-xGaxSe2 thin-film solar cells - Dependence on alloy composition. Physica Status Solidi a-Applied Research, 2000. 179(1): p. R7-R8.
30. Asher, S., et al., Sodium diffusion, selenization, and microstructural effects associated with various molybdenum back contact layers for CIS-based solar cells, in 1994 Ieee First World Conference on Photovoltaic Energy Conversion/Conference Record of the Twenty Fourth Ieee Photovoltaic Specialists Conference-1994, Vols I and Ii1994, I E E E: New York. p. 164-167.
31. Sakurai, K., et al., Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1877-1880.
32. Kronik, L., D. Cahen, and H.W. Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1998. 10(1): p. 31-36.
33. Jiang, C.-S., et al., Direct evidence of a buried homojunction in Cu(In,Ga)Se[sub 2] solar cells. Applied Physics Letters, 2003. 82(1): p. 127-129.
34. Lee, D.Y., et al., Effect of Cu content on the photovoltaic properties of Cu(In,Ga)Se-2 solar cells prepared by the evaporation of binary selenide sources. Electronic Materials Letters, 2008. 4(1): p. 13-18.
35. Yan, Y., et al., Microstructure of surface layers in Cu(In,Ga)Se[sub 2] thin films. Applied Physics Letters, 2002. 81(6): p. 1008-1010.
36. Liao, D. and A. Rockett, Cu depletion at the CuInSe[sub 2] surface. Applied Physics Letters, 2003. 82(17): p. 2829-2831.
37. Rega, N., et al., Excitonic luminescence of Cu(In,Ga)Se2. Thin Solid Films, 2005. 480–481(0): p. 286-290.
38. Cheng, T.H., et al., Photoluminescence characterization and passivation of CIGS absorber, in Photovoltaics for the 21st Century 6, M. Tao, et al., Editors. 2011, Electrochemical Soc Inc: Pennington. p. 191-197.
39. Wei, L., et al., The influence of alloy phases in the precursors on the selenization reaction mechanisms. Journal of Physics D: Applied Physics, 2009. 42(12): p. 125303.


(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *