帳號:guest(3.147.59.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊喻閔
作者(外文):Yang, Yu-Min
論文名稱(中文):以新穎銥錯合物染料製備高效率可乾、溼式製作之綠光有機發光二極體
論文名稱(外文):High-Efficiency Wet- and Dry-Processed Green Organic Light Emitting Diodes with a Novel Iridium Complex Based Emitter
指導教授(中文):周卓煇
口試委員(中文):金志龍
岑尚仁
薛景中
蔡永誠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031559
出版年(民國):102
畢業學年度:101
語文別:中文英文
論文頁數:103
中文關鍵詞:綠光銥錯合物有機發光二極體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:481
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
有機發光二極體 (Organic Light Emitting Diode, OLED),被稱作是終極的顯示技術,亦可能是史上最佳的照明光源;高效率可以使此等元件節能,並呈現較長壽命;而其整體效率高低,端看紅、藍、綠三發光體的效率而定;在這當中,因為人眼對綠光的感受度最高,使得綠光 OLED 對元件整體的效率表現影響最大;又為考量製作成本,研發一個可同時適用於乾式與溼式製程的高效率綠光發光體,乃至關重要;有鑑於此,本研究探索利用一新穎綠光銥金屬錯合物發光體,bis [5-methyl-8-trifluoromethyl-5H-benzo(c)(1,5)naphthyridin-6-one]iridium (acetyl acetonate),以製作OLED元件;在以4,4'-bis(carbazol-9-yl) biphenyl 當作主體材料時,在亮度 1,000 cd m-2 的情況下,以乾式製作的此一綠光元件,其電流效率為77 cd A-1,外部量子效率 21%,能量效率 64 lm W-1;以濕式製作時,其電流效率為 95 cd A-1,外部量子效率 26%,能量效率 69 lm W-1,為溼式製作綠光元件當中的世界紀錄;此元件高效率的原因,有至少以下二點:首先,此一綠磷光染料本身具備良好的電致發光活性,像是極短的激態生命期 (1.25μs) 及相當高的量子產率 (69%);再者,元件發光層當中,搭配具有電子注入能井的主體材料,以促使身為少數載子的電子更加容易注入,以與大量注入的電洞平衡,增加再結合效率,進而提升放光效率。
High efficiency green emission is crucial to the designs of energy-saving display and lighting. Efficient electroluminescent green emitters with both wet- and dry-process feasibility is highly desirable in order to realize, respectively, cost-effective large roll-to-roll manufacturing and high performance products. We demonstrate in this study high efficiency phosphorescent green organic light-emitting diodes with a novel iridium complex, bis[5-methyl-8-trifluoromethyl-5H-benzo(c)(1,5)naphthyridin- 6-one] iridium (acetyl acetonate), possessing both wet- and dry-process feasibility. The emitter exhibits a short excited-state lifetime, 1.25 μs, and a high quantum yield, 69%, due to the efficient intersystem crossing of the ground-state to the excited-state. Using 4,4’-bis(carbazol-9-yl) biphenyl as host for example, the device shows at 1,000 cd m-2 an external quantum efficiency (EQE) of 21%, current efficiency of 77 cd A-1 and power efficiency of 64 lm W-1 via vapor deposition, while 26% EQE, current efficiency of 77 cd A-1 and 69 lm W-1 by spin-coating, the highest among all reported wet-processed green organic light-emitting diodes. Besides the electroluminescence effective emitter, the high device efficiency may also be attributed to the employed device architecture enabling therein an electron trap to facilitate the injection of this minor carrier against that of hole, leading to a balanced carrier-injection, and hence a high carrier recombination and in turn a high device efficiency.
目錄
摘要 I
英文摘要 II
致謝 IV
目錄 VIII
表目錄 XI
圖目錄 XII
壹、緒論 1
貳、文獻回顧 4
2-1、有機發光二極體的歷史發展 4
2-2、有機發光二極體的發光機制 15
2-2-1、有機電激發光原理 15
2-2-2、有機發光二極體電流限制 17
2-2-3、能量轉移機制 20
2-3、有機發光二極體的發光材料 23
2-4、光色定義 27
2-5、有機發光二極體之有機材料發展 28
2-5-1、電洞注入材料 28
2-5-2、電洞傳輸材料 29
2-5-3、電子傳輸材料 30
2-5-4、電子注入材料 31
2-6、高效率有機發光二極體元件 32
2-6-1、高效率綠磷光有機發光二極體材料 34
2-6-2、高效率乾式製程綠光有機發光二極體元件結構 38
2-6-3、高效率溼式製程綠光有機發光二極體元件結構 39
2-6-4、有機發光二極體之光萃取技術 41
參、實驗方法 44
3-1、材料 44
3-1-1、(2-CF3BNO)2Ir(acac) 之合成 47
3-1-2、材料性質量測 49
3-2、元件設計及製備 52
3-3、元件光電特性量測及發光效率計算 58
肆、結果與討論 61
4-1、新穎綠磷光材料之材料特性 61
4-2、溼式製程製備綠磷光 (2-CF3BNO)2Ir(acac) 元件 69
4-2-1、溼式元件之能階結構 69
4-2-2、主體材料對溼式元件之影響 71
4-2-2-1、探討能階結構對綠光元件電性表現之影響 73
4-2-2-2、探討主客體能量傳遞對綠光元件效率之影響 77
4-2-3、染料濃度對溼式元件之影響 79
4-3、乾式製程製備綠磷光 (2-CF3BNO)2Ir(acac) 元件 82
4-3-1、乾式元件之能階結構 82
4-3-2、乾式元件之可行性 84
4-3-3、電子侷限層對元件電性的影響 85
伍、結論 87
陸、參考文獻 89
附錄、個人著作目錄 102
(A) 期刊論文 102
(B) 研討會論文 103


表目錄
表一、不同光色之波長、HOMO-LUMO能階差及色座標 17
表二、本研究所使用之材料的功能、化學式及簡稱 45
表三、綠磷光材料(2-CF3BNO)2Ir(acac)及藍綠光(2-CF3BNO)2Ir(pic)之光物理、電化學及熱穩定特性表 62
表四、使用四種主體並固定客體染料摻雜濃度之溼式元件電性表 71
表五、改變客體染料摻雜濃度之溼式元件電性表 78
表六、CBP作為主體,摻雜客體濃度15wt% 之乾式及溼式元件電性表 84
表七、電子侷限功能反映至乾式元件之電性表 85


圖目錄
圖一、美國柯達公司鄧青雲博士團隊首創異質界面之雙層 (a) 元件結構及 (b) 能階示意圖 6
圖二、日本九州大學Saito教授團隊提出載子再結合區域位於具電洞傳輸功能之發光層的OLED元件結構 7
圖三、日本九州大學Saito教授團隊發表之OLED元件結構 8
圖四、日本山形大學Kido教授團隊,在電洞傳輸層及電子傳輸層之間,加入一載子侷限層之三層式OLED元件結構 9
圖五、德國Dresden大學Leo教授團隊發表之p-i-n結構圖 10
圖六、美國柯達公司鄧青雲博士等人發表之堆疊式元件結構圖 11
圖七、美國UCLA大學Yang教授發表之蒸鍍源熱熔混合法示意圖 12
圖八、臺灣清華大學周教授團隊發表之溶劑預混法示意圖 12
圖九、Wang等人發表高效率可撓式綠光OLED出光及結構示意圖 13
圖十、OLED基本元件結構示意圖 15
圖十一、OLED之能階結構及發光機制示意圖 16
圖十二、Förster與Dexer兩種能量傳遞機制示意圖 21
圖十三、電子受激發後,回到基態放出螢、磷光的Jablonski能階圖 23
圖十四、單重態及三重態激子之分布示意圖 25
圖十五、日本九州大學Adachi教授團隊發表TADF能量傳遞圖 26
圖十六、1931國際照明標準委員會(Commission Internationale de L'Eclairage,CIE ) 所訂定之色座標圖 27
圖十七、影響OLED元件效率的因素示意圖 33
圖十八、電洞注入材料PEDOT:PSS及電洞傳輸材料TAPC之分子結構式 46
圖十九、主體材料Spiro-2CBP、TcTa、SimCP2及CBP之分子結構式 46
圖二十、綠磷光發光染料 (2-CF3BNO)2Ir(acac) 之分子結構式 47
圖二十一、電子傳輸材料TPBi之分子結構式 47
圖二十二、(2-CF3BNO)2Ir(acac) 化學合成示意圖 48
圖二十三、元件之電路設計 52
圖二十四、真空蒸鍍系統之示意圖 56
圖二十五、OLED光電特性量測示意圖 60
圖二十六、綠磷光材料(2-CF3BNO)2Ir(acac)(實線)及藍綠光(2-CF3BNO)2Ir(pic)(虛線)的光激發光及紫外光 ⁄ 可見光吸收光譜 61
圖二十七、綠磷光 (2-CF3BNO)2Ir(acac)(實線)及藍綠光(2-CF3BNO)2Ir(pic)(虛線)的電化學氧化、還原電位圖 65
圖二十八、綠磷光 (2-CF3BNO)2Ir(acac)和藍綠光(2-CF3BNO)2Ir(pic) 的電子雲分布圖 67
圖二十九、摻雜(2-CF3BNO)2Ir(acac)為客體染料之溼式元件能階結構示意圖 70
圖三十、主體材料對元件能量效率之影響 72
圖三十一、主體材料對元件電流密度之影響 72
圖三十二、四種主體材料Spiro-2CBP、TcTa、SimCP2及CBP的光激發光光譜,及綠光 (2-CF3BNO)2Ir(acac) 的紫外光⁄可見光吸收光譜 78
圖三十三、CBP作為主體,客體染料濃度對元件能量效率之影響 80
圖三十四、CBP作為主體,客體染料濃度對元件電流效率之影響 80
圖三十五、溼式綠光OLED元件效率柱狀圖 81
圖三十六、摻雜 (2-CF3BNO)2Ir(acac) 為客體染料,(a) 選用PEDOT:PSS當作電洞注入材料及 (b) 選用TAPC當作電洞傳輸材料之乾式元件能階結構示意圖 83
圖三十七、電子侷限功能對元件能量效率之影響 86
[1] J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332-1334.
[2] O. Prache, Displays, 2001, 22, 49-56.
[3] J. Y. Lee, J. H. Kwon and H. K. Chung, Organic Electronics, 2003, 4, 143-148.
[4] S. R. Forrest, Nature, 2004, 428, 911-918.
[5] A. R. Duggal, J. Shiang, C. M. Heller and D. F. Foust, Applied Physics Letters, 2002, 80, 3470-3472.
[6] B. W. D’Andrade, R. J. Holmes and S. R. Forrest, Advanced Materials, 2004, 16,624-628.
[7] H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park and K. Lee, Advanced Materials, 2002, 14, 1275-1279.
[8] J. Lewis, S. Grego, B. Chalamala, E. Vick and D. Temple, Applied Physics Letters, 2004, 85, 3450-3452.
[9] F. So, J. Kido and P. Burrows, Mrs Bulletin, 2008, 33, 663-669.
[10] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 2009, 459, 234-238.
[11] C. H. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, R. Fröhlich and L. D. Cola, Chemistry of materials, 2012, 24, 3684-3695.
[12] G. Tan, S. Chen, N. Sun, Y. Li, D. Fortin, W. Y. Wong, H. S. Kwok, D. Ma, H. Wu, L. Wang and P. D. Harvey, Journal of Materials Chemistry C, 2013, 1, 808-821.
[13] J. H. Park, T. W. Koh, J. Chung, S. H. Park, M. Eo, Y. Do, S. Yoo and M. H. Lee, Macromolecules, 2013, 46, 674-682.
[14] R. Wang, L. Deng, T. Zhang and J. Li, Dalton transactions, 2012, 41, 6833-6841.
[15] S. Chen, G. Tan, W. Y. Wong and H. S. Kwok, Advanced Functional Materials, 2011, 21, 3785-3793.
[16] J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen and H. Y. Chen, Chemistry of Materials, 2009, 21, 2565-2567.
[17] H. Y. Li, L. Zhou, M. Y. Teng, Q. L. Xu, C. Lin, Y. X. Zheng, J. L. Zuo, H. J. Zhang and X. Z. You, Journal of Materials Chemistry C, 2013, 1, 560-565.
[18] J. H. Jou, C. J. Li, S. M. Shen, S. H. Peng, Y. L. Chen, Y. C. Jou, James. H. Hong, C. L. Chin, J. J. Shyue, S. P. Chen, J. Y. Li, P. H. Wang and C. C. Chen, Journal of Materials Chemistry C, 2013, Doi: 10.1039/C3TC30606B.
[19] J. Y. Liao, H. C. Yeh, T. C. Chao, J. S. Lin and M. R. Tseng, SPIE Organic Photonics Electronics, International Society for Optics and Photonics, 2012, Doi:10.1117/12.928347.
[20] R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu and J. Li, Advanced Materials, 2011, 23, 2823-2827.
[21] C. L. Ho, W. Y. Wong, Q. Wang, D. Ma, L. Wang and Z. Lin, Advanced Functional Materials, 2008, 18, 928-937.
[22] Y. Wang, N. Herron, V. V. Grushin, D. LeCloux and V. Petrov, Applied Physics Letters, 2001, 79, 449-451.
[23] J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing and F. Wang, Advanced Functional Materials, 2006, 16, 575-581.
[24] S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Advanced Materials, 2005, 17, 285-289.
[25] J. S. Park, M. Song, Y. S. Gal, J. W. Lee and S. H. Jin, Synthetic Metals, 2011, 161, 213-218.
[26] R. J. Holmes, B. W. D’Andrate, S. R. Forrest, X. Ren, J. Li and M. E. Thompson, Applied Physics Letters, 2003, 83, 3818-3820.
[27] J. H. Jou, S. Z. Chen, S. H. Peng, T. Y. Ting, J. J. Shyue, C. L. Chin and C. T. Chen, Organic Electronics, submitted for publication.
[28] G. Zhou, C. L. Ho, W. Y. Wong, Q. Wang, D. Ma, L. Wang, Z. Lin, T. B. Marder and A. Beeby, Advanced Functional Materials, 2008, 18, 499-511.
[29] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest and M. E. Thompson, Journal of the American Chemical Society, 2001, 123, 4304-4312.
[30] M. Li, H. Zeng, Y. Meng, H. Sun, S. Liu, Z. Lu, Y. Huang and X. Pu, Dalton transactions, 2011, 40, 7153-7164.
[31] M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar and A. P. Monkman, Journal of Materials Chemistry, 2012, 22, 6419-6428.
[32] C. L. Ho, Q. Wang, C. S. Lam, W. Y. Wong, D. G. Ma, L. X. Wang, Z. Q. Gao, C. H. Chen, K. W. Cheah, Z. Y. Lin, Chemistry-An Asian Journal, 2009, 4, 89-103.
[33] N. Koch, A. Elschner, J. Schwartz and A. Kahn, Applied Physics Letters, 2003, 82, 2281-2283.
[34] J. X. Tang, C. S. Lee, S. T. Lee and Y. B. Xu, Chemical Physics Letter., 2004, 396, 92-96.
[35] A. Wan, J. Hwang, F. Amy and A. Kahn, Organic Electronics, 2005, 6, 47-54.
[36] J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang and J. J. Shyue, Advanced Functional Materials, 2008, 18, 121-126.
[37] J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue and C. C. Chiang, Organic Electronics, 2008, 9, 291-295.
[38] J. H. Jou, Y. S. Wang, C. H. Lin, S. M. Shen, P. C. Chen, M. C. Tang, Y. Wei, F. Y. Tsai and C. T. Chen, Journal of Materials Chemistry, 2011, 21, 12613-12618.
[39] J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li and R. S. Liu, Organic Electronics, 2007, 8, 29-36.
[40] C. H. Wu, P. I. Shih, C. F. Shu and Y. Chi, Applied Physics Letters, 2008, 92, 233303.
[41] Z. Y. Xie, L. S. Hung and S. T. Lee, Applied Physics Letters, 2001, 79, 1048-1050.
[42] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Applied Physics Letters, 2001, 79, 156-158.
[43] F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang and L. Zuppiroli, Advanced Functional Materials, 2005, 15, 323-330.
[44] G. Wald, Science, 1945, 101,.653-658.
[45] L. T. Sharpe, A. Stockman, W. Jagla and H. Jagle, Journal of Vision, 2005, 5, 948-968.
[46] A. Bernanose, M. Conet and P. Vouauzx, Journal De Chimie Physique Et De Physico-Chimie Biologique, 1953, 50, 64-68.
[47] M. Pope, P. Magnante and H. P. Kallmann, Journal of Chemical. Physics, 1963, 38, 2042-2043.
[48] W. Helfrich and W. G. Schneide, Physical Review Letters, 1965, 14, 229-231.
[49] W. Helfrich and W. G. Schneide, Journal of Chemical Physics, 1966, 44, 2902-2909.
[50] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films, 1982, 94, 171-183.
[51] R. H. Partridge, Polymer, 1983, 24, 733-738.
[52] C. W. Tang and S. A. Vanslyke, Applied Physics Letters, 1987, 51, 913-915.
[53] S. A. Vanslyke, C. W. Tang and L. C. Robert, US. Pat. 1988, No. 4,720,432.
[54] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Japanese Journal of Applied Physics, 1988, 27, L713-L715.
[55] C. W. Tang, S. A. Vanslyke and C. H. Chen, Journal of Applied Physics, 1989, 65, 3610-3616.
[56] M. Era, C. Adachi, T. Tsutsui and S. Saito, Chemical Physics Letters, 1991, 178, 488-490.
[57] J. Kido, K. Honggawa, K. Okuyama and K. Nagai, Applied Physics Letters, 1994, 64, 815-817.
[58] J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332-1334.
[59] L. S. Hung, C. W. Tang and M. G. Mason, Applied Physics Letters, 1997, 70, 152-154.
[60] G. E. Jabbour, B. Kippelen, N. R. Armstrong and N. Peyghambarian, Applied Physics Letters, 1998, 73, 1185-1187.
[61] J. Kido and T. Mazukami, US. Pat. 2000, No. 6,013,384.
[62] J. S. Huang, M. Pfeiffer, A. Warner, J. Blochwitz, K. Leo and S. Y. Liu, Applied Physics Letters, 2002, 80, 139-141.
[63] L. S. Liao, K. P. Klubek and C. W. Tang, Applied Physics Letters, 2004, 84, 167-169.
[64] Y. Shao and Y. Yang, Applied Physics Letters, 2005, 85, 073510.
[65] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Applied Physics Letters, 2006, 88, 193501.
[66] Y. Sun and S. R. Forrest, Nature Photonics, 2008, 2, 483-487.
[67] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu and Z. H. Lu, Nature Photonics, 2011, 5, 753-757.
[68] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, Nature Photonics, 2012, 6, 105-110.
[69] Dodabalapur, Bell Lab., Solid State Communications, 1997, 102, 259.
[70] W. D. Gill, Journal of Applied Physics, 1972, 43, 5033-5040.
[71] U. Wolf, V. I. Arkhipov and H. Bassler, Physical Review B, 1999, 59, 7507-7513.
[72] S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. E. Seidler and W. Riess, Physical Review B, 1999, 60, 8791-8797.
[73] M. A. Lampert and P. Mark, Current Injection in Solids, 1970, New York, Academic Press.
[74] Murgatro.Pn, Journal of Physics D-Applied. Physics, 1970, 3, 151.
[75] T. Förster, Annalen Der Physik., 1948, 6, 55-75.
[76] L. Dexter, Journal of Chemical Physics, 1953, 21, 836-850.
[77] M. Klessonger, J. Michl, ”Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York, 1995.
[78] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
[79] L. G. Thompson and S. E. Webber, Journal of Physical Chemistry, 1972, 76, 221.
[80] H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238.
[81] C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry 1986.
[82] S. A. VanSlyke, C. H. Chen and C. W. Tang, Applied Physics Letters, 1996, 69, 2160-2162.
[83] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer and S. Thurm, Synthetic Metals, 2000, 111, 139-143.
[84] S. A. VanSlyke, C. H. Chen and C. W. Tang, Applied Physics Letters, 1996, 69, 2160-2162.
[85] S. A. VanSlyke, C. H. Chen and C. W. Tang, US. Pat. 1991, No. 5,061,569.
[86] J. Shi, C. W. Tang and C. H. Chen, US. Pat. 1997, No. 5,646,948.
[87] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, Ieee Transactions on Electron Devices, 1997, 44, 1245-1248.
[88] C. Ganzorig, K. Suga and M. Fujihira, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2001, 85, 140-143.
[89] T. Brown, R. Friend, I. Millard, D. Lacey, T. Butler, J. Burroughes and F. Cacialli, Journal of Applied Physics, 2003, 93, 6159-6172.
[90] S. Shaheen, G. Jabbour, M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. Mash and N. Armstrong, Journal of Applied Physics, 1998, 84, 2324-2327.
[91] T. Mori, H. Fujikawa, S. Tokito and Y. Taga, Applied Physics Letters, 1998, 73, 2763-2765.
[92] H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern and M. Stossel, Journal of Applied Physics, 2001, 89, 420-424.
[93] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Applied Physics Letters, 1999, 74, 4-6.
[94] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, Journal of Applied Physics, 2001, 90, 5048-5051.
[95] S. C. Lo, N. A. Male, J. P. Markham, S. W. Magennis, P. L. Burn, O. V. Salata and I. D. Samuel, Advanced Materials, 2002, 14, 975-979.
[96] W. Y. Wong, C. L. Ho, Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah and Z. Lin, Angewandte Chemie-International Edition, 2006, 45, 7800-7803.
[97] C. J. Chang, C. H. Yang, K. Chen, Y. Chi, C. F. Shu, N. L. Ho, Y. S. Yeh and P. T. Chou, Dalton Transactions, 2007, 19,1881-1890.
[98] L. Han, D. Yang, W. Li, B. Chu, Y. Chen, Z. Su, D. Zhang, F. Yan, Z. Hu and Z. Zhang, Applied Physics Letters, 2008, 93, 153303.
[99] Y. C. Zhu, L. Zhou, H. Y. Li, Q. L. Xu, M. Y. Teng, Y. X. Zheng, J. L. Zuo, H. J. Zhang and X. Z. You, Advanced Materials, 2011, 23, 4041-4046.
[100] S. Watanabe, N. Ide and J. Kido, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46, 1186-1188.
[101] D. Tanaka, H. Sasabe, Y. J. Li, S. S. Su, T. Takeda and J. Kido, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007, 46, 1, L10.
[102] H. Sasabe and J. Kido, Chemistry of materials, 2011, 23, 621-630.
[103] X. H. Yang, D. C. Muller, D. Neher and K. Meerholz, Advanced Materials, 2006, 18, 948-954.
[104] N. Rehmann, D. Hertel, K. Meerholz, H. Becker and S. Heun, Applied Physics Letters, 2007, 91, 103507.
[105] Y. H. Niu, S. Liu, J. W. Ka, J. Bardeker, M. T. Zin, R. Schofield, Y. Chi and K. Y. Jen, Advanced Materials, 2007, 19, 300-304.
[106] J. J. Park, T. J. Park, W. S. Jeon, R. Pode, J. Jang, J. H. Kwon, E. S. Yu and M. Y. Chae, Organic Electronics, 2009, 10, 189-193.
[107] L. Wang, Y. Jiang, J. Luo, Y. Zhou, J. H. Zhou, J. Wang, J. Pei and Y. Cao, Advanced Materials, 2009, 21, 4854-4858.
[108] J. H. Park, C. Yun, T. W. Koh, Y. Do, S. Yoo and M. H. Lee, Journal of Materials Chemistry, 2011, 21, 5422-5429..
[109] M. F. Wu, S. J. Yeh, C. T. Chen, H. Murayama, T. Tsuboi, W. S. Li, I. Chao, S. W. Liu and J. K. Wang, Advanced Functional Materials, 2007, 17, 1887-1895.
[110] M. S. Soh, S. A. G. Santamaria, E. L. Williams, M. Perez-Morales, H. J. Bolink and A. Sellinger, Journal of Polymer Science Part B-Polymer Physics., 2011, 49, 531-539.
[111] C. L. Lin, T. Y. Cho, C. H. Chang and C. C. Wu, Applied Physics Letters, 2006, 88, 081114.
[112] V. Bulovic, V. B. Khalfn, G. Gu et al., Physical Review B, 1998, 58, 3730-3740.
[113] J. J. Shiang and A. R. Duggal, Journal of Applied Physics, 2004, 95, 2880-2888.
[114] Y. S. Tyan, Y. Q. Rao, J. S. Wang, R. Kesel, T. R. Cushman and W. J. Begley, Proceedings of SID 2008, 933-936.
[115] C. F. Madigan, M. H. Lu and J. C. Sturm, Applied Physics Letters, 2000, 76, 1650.
[116] K. Y. Chen, H. Y. Lin, J. H. Lee, Y. H. Ho, Y. T. Hsiao, M. K. Wei and J. R. Lin, Journal of Technology, 2009, 24, No. 2, 163-167.
[117] M. Yahiro, D. Zou and T. Tsutsui, Synthetic Metals, 2001, Volumes 111-112, 245-247.
[118] K. A. King, P. J. Spellane, R. J. Watts, Journal of the American Chemical Society, 1985, 107, 1431-1432.
[119] J. H. Jou, M. C. Sun, H. H. Chou and C. H. Li, Applied Physics Letters, 2005, 87, 043508.
[120] Y. You and S. Y. Park, Journal of the American Chemical Society, 2005, 127, 12438-12439.
[121] 陳金鑫, 陳錦地, 吳忠幟, 白光OLED照明, 五南圖書出版有限公司, 2009
[122] H. Zollinger, Color Chemistry : Syntheses, Properties and Application of Oeganic Dyes and Pigments, 2nd ed., VSH : Weinheim, Germany, 1991.
[123] Z. Q. Chen, Z. Q. Bian and C. H. Huang, Advanced Materials, 2010, 22, 1534-1539.
[124] C. Ulbricht, B. Beyer, C. Friebe, A. Winter and U. S. Schubert, Advanced Materials, 2009, 21, 4418-4441.
[125] 陳金鑫, 黃孝文, OLED夢幻顯示器˙OLED材料與元件, 五南圖書出版有限公司, 2007
[126] S. Reineke, K. Walzer and K. Leo, Physical Review B, 2007, 75, 125328.
[127] N. C. Giebink and S. R. Forrest, Physical Review B, 2008, 77, 235215.
[128] Y. Divayana and X. W. Sun, Physical Review. Letters, 2007, 99, 143003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *