帳號:guest(18.227.114.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賀安麗
論文名稱(中文):以水熱、共沉法二步驟製備富鋰錳基正極材料x Li2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2之電性表現
論文名稱(外文):Investigation of Electrical Performance of x Li2MnO3.(1-x)LiMO2(M=Ni,Co,Mn) Prepared through a Two-stage Process of Co-precipitation and Hydrothermal Methods
指導教授(中文):蔡哲正
口試委員(中文):林居南
俎永熙
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031558
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:99
中文關鍵詞:富鋰材料共沉法水熱法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:465
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
Li2MnO3與LiNi1/3Co1/3Mn1/3O2皆為層狀結構,兩者混合能形成充放電區間為2~4.8 V的固溶體富鋰材料Li2MnO3.LiNi1/3Co1/3Mn1/3O2,為一種高伏材料。此材料第一次充放電時將因Li2MnO3氧化脫出Li2O造成不可逆的電容量損失。本實驗討論pH值在共沉法製備富鋰材料前驅體時對電性的影響,此外嘗試使用水熱法與共沉法兩步驟製備活性物質:分別將兩固溶成分Li2MnO3與LiNi1/3Co1/3Mn1/3O2以水熱法與共沉法製備並調整兩製程先後順序,觀察其對電性的影響。研究發現,兩步驟製備法中以先水熱製備Li2MnO3後再共沉法製備LiNi1/3Co1/3Mn1/3O2能降低第一次充放電時的不可逆電容量損失,且具有比直接共沉法製備富鋰材料更好的電容量與循環性能。

Both Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 are layered structure, and they can be mixed to form a solid solution Li2MnO3.LiNi1/3Co1/3Mn1/3O2, which its charge-discharge region between 2 and 4.8 V. This material will release Li2O due to Li2MnO3 irreversible decomposition when voltage are above 4.5 V in the first charge cycle, and that’s the reson for loss of capacity in the first cycle. This experiment is composed by three part. First, I will discuss how the pH value affect the electrochemical performances when preparing Li2MnO3.LiNi1/3Co1/3Mn1/3O2 precursor through co-precipitation method. The second and the third parts will take apart Li2MnO3.LiNi1/3Co1/3Mn1/3O2 into Li2MnO3 and LiNi1/3Co1/3Mn1/3O2. We try to prepare Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 through hydrothermal and co-precipitatio method, respectively, and observe how the order of these two step processes affect the electrochemical performances. In my report,process that using hydrothermal method to prepare Li2MnO3 first then co-precipitaion method to prepare LiNi1/3Co1/3Mn1/3O2 thereafter can lower the capacity loss in the first cycle, and even have higher capacity and better cycle ability comparing to Li2MnO3.LiNi1/3Co1/3Mn1/3O2 prepared by co-precipitation method.
目錄
Abstract I
摘要 II
Acknowledgement III
目錄 V
Chapter 1. 前言 1
Chapter 2. 文獻回顧 3
1.1 能源市場 3
1.2 鋰電池工作原理 8
1.3 正極材料 10
1.3.1 層狀結構材料 10
1.3.2 尖晶石結構材料 12
1.3.3 橄欖石結構材料 14
1.3.4 富鋰材料 15
1.3.4.1 合成方式 15
1.3.4.2 結構、相研究 16
1.3.4.3 電化學特性 19
1.3.4.4 電化學性能改良 20
1.4 研究動機 23
Chapter 3. 實驗步驟 24
1.5 實驗方法 24
1.5.1 共沉法製備x Li2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2 24
1.5.2 先共沉(LiMO2)後水熱(Li2MnO3)法 25
1.5.3 先水熱(Li2MnO3)後共沉(LiMO2)法 27
1.6 材料鑑定分析 29
1.6.1 X-ray Diffraction (相鑑定) 29
1.6.2 Scanning Electron Microscopy (前驅物形貌) 30
1.6.3 X-ray Photoelectron Spectroscopy (表面元素價態) 30
1.7 材料電化學特性分析 30
1.7.1 製作電極片(塗布、裁片) 30
1.7.2 電池組裝 31
1.7.3 電性測試 (cycle-test) 31
1.7.4 循環伏安測試 31
Chapter 4. 結果與討論 33
1.8 共沉法製備x Li2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2 33
1.8.1 pH值對製備0.5 Li2MnO3.0.5 LiNi1/3Co1/3Mn1/3O2的影響 33
1.8.1.1 相鑑定 33
1.8.1.2 前驅物形貌 36
1.8.1.3 Li2MnO3.LiNi1/3Co1/3Mn1/3O2表面錳價態 37
1.8.1.4 電性表現 39
1.8.2 改變Li2MnO3與LiNi1/3Co1/3Mn1/3O2的比例 46
1.8.2.1 相鑑定 46
1.8.2.2 前驅物形貌 47
1.8.2.3 電性表現 47
1.9 先共沉製備LiNi1/3Co1/3Mn1/3O2再水熱製備Li2MnO3 54
1.9.1 相鑑定 54
1.9.2 產物形貌 56
1.9.3 Li2MnO3.LiNi1/3Co1/3Mn1/3O2表面錳價態 58
1.9.4 電性表現 60
1.10 先水熱製備Li2MnO3再共沉製備LiNi1/3Co1/3Mn1/3O2 65
1.10.1 相鑑定 65
1.10.2 前驅物形貌 69
1.10.3 Li2MnO3.LiNi1/3Co1/3Mn1/3O2表面錳價態 69
1.10.4 電性表現 72
Chapter 5. 結論 86
參考文獻 88
[1] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review,” Energy & Environmental Science, vol. 4, pp. 3243-3262, 2011
[2] F. Cheng , J. Liang , Z. Tao , and J. Chen, ” Functional Materials for Rechargeable Batteries,” Advanced Materials, vol. 23,pp. 1695-1715, 2011
[3] 黃可龍,王兆祥,劉素琴,馬振基。鋰離子電池原理與技術。台北:五南圖書出版社,2010。
[4] M. M. Thackeray, C. Wolverton and E. D. Isaacs, “Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries,” Energy & Environmental Science, vol. 5, pp. 7854–7863, 2012
[5] G. Jeong,Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries,” Energy & Environmental Science, vol. 4, pp. 1986–2002, 2011
[6] B. Xu, D. Qian, Z. Wang, Y. S. Meng,” Recent progress in cathode materials research for advanced lithium ion batteries,” Materials Science and Engineering R,vol. 73,pp. 51-65, 2012
[7] T. Ohzuku and Y. Makimura, “Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries,” Chemistry Letters, no. 8, pp. 744–745, 2001
[8] T. Ohzuku, Y. Makimura, “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries,” Chemistry Letters, no. 7,pp.642-643, 2001
[9] Z. Lu, D.D. MacNeil, and J.R. Dahn, “New Layered Cathode Materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for Lithium Ion Batteries,” Electrochemical and Solid State Letters, vol. 4, pp. A191-A194, 2001
[10] M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, “Lithium insertion into manganese spinels,” Materials Research Bulletin, vol.18, pp.461-472, 1983
[11] J.B. Goodenough, M.M. Thackeray, W.I.F. David, P.G. Bruce, ”Lithium Insertion Extraction Reactions with Manganese Oxides,” Revue de Chimie Minerale, vol. 21,pp. 435–455, 1984
[12] T. Ohzuku, S. Takeda, M. Iwanaga, “Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (M3: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries,”Journal of Power Sources, vol. 81–82, pp. 90-94, 1999
[13] A .K Padhi, K.S. Nanjundaswamy and J. B. Goodenough, “Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries,” Journal of the Electrochemical Society, vol. 144, pp.1188-1194, 1997
[14] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, “Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates,” Journal of the Electrochemical Society, vol. 144, pp. 1609–1613, 1997
[15] A. Yamada, S.C. Chung,”Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries,” Journal of the Electrochemical Society, vol.148, pp. A960–A967, 2001
[16] J. Wolfenstine, J. Allen, “LiNiPO4-LiCoPO4 sole solutions as cathodes,” Journal of Power Sources, vol. 136, pp. 150–153, 2004
[17] J. Wolfenstine, J. Allen, “Ni3+/Ni2+ redox potential in LiNiPO4,” Journal of Power Sources, vol. 142, pp. 389–390, 2005
[18] A. Nyte´ n, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, “Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material,“ Electrochemistry Communications, vol. 7, pp. 156–160, 2005
[19] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, “Structure and Electrochemical Performance of Li2MnSiO4 and Li2FeSiO4 as Potential Li-Battery Cathode Materials,” Electrochemistry Communications, vol. 8, pp. 217–222, 2006
[20] R.K.B. Gover, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Barker, “LiVPO4F: A new active material for safe lithium-ion batteries,” Solid State Ionics, vol. 177, pp. 2635–2638,2006
[21] V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard, Y. Piffard,”LiMBO3 (M=Mn,Fe,Co) synthesis, crystal structure and lithium deinsertion / intertion properties, ” Solid State Ionics, vol. 139, pp. 37–46, 2001
[22] 張洪斌,曾樂才,廖文俊,楊霖霖,"鋰電池產業概況及其在儲能中的應用", 裝備機械,vol.1, pp. 38-44, 2012
[23] D. Aurbach, E. Levi, M. D. Levi, G. Salitra, B. Markovsky, K. Gamolsky, R. Oesten, U. Heider and L. Heider, “Electrochemical and in-situ XRD characterization of LiNiO2 and LiCo0.2Ni0.8O2 electrodes for rechargeable lithium cells,” Solid State Ionics, vol. 126, pp. 97-108, 1999
[24] A. R. Kamali and D. J. Fray, “Review on carbon and silicon based materials as anode materials for lithium ion batteries,” Journal of New Materials for Electrochemical Systems, vol. 13, pp. 147-160, 2010
[25] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, “LixCoO2 (0[26] 吳宇平,戴曉兵,馬軍旗,程預江。鋰離子電池——應用與實踐。北京: 化學工業出版社,2004
[27] L.D. Dyer, B.S. Borie and G.P. Smith, “Alkaki Metal-nickel Oxides of the Type MNiO2,” Journal of the American Chemical Society, vol. 78, pp. 1499-1503, 1954
[28] D. Aurbach, M.D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L.Heider, R. Oesten, “Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques,” Journal of Power Sources, vol. 81, pp. 472–479, 1999
[29] Y.Y. Xia, Y.H. Zhou, M. Yoshio, “CAPACITY FADING ON CYCLING OF 4 V LI LIMN2O4 CELLS,“ Journal of the Electrochemical Society, vol. 144, pp. 2593–2600, 1997
[30] Y.J. Shin, A. Manthiram, “Factors influencing the capacity fade of spinel lithium manganese oxides,” Journal of the Electrochemical Society, vol. 151, pp. A204–A208, 2004
[31] J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, “Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3̄m and P4332,” Chemistry of Materials, vol. 16, pp. 906–914, 2004
[32] Z. H. Lu, J. R. Dahn,” Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies,” Journal of the Electrochemical Society, vol. 149, pp. A815−A822, 2002
[33] 王綏軍,趙煜娟,趙春松,夏定國,”鋰離子電池富鋰正極材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (x=1/5, 1/4, 1/3)的合成及電化學性能",高等學校化學學報(Chem. J. Chinese U.),vol. 30, pp. 2358−2362, 2010
[34] D. K. Lee, S. H. Park, K.Amine, ” High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method,” Journal of Power Sources, vol. 162, pp.1346−1350, 2006
[35] M. Tabuchi , Y. Nabeshima, K. Ado, “Material design concept for Fe-substituted Li2MnO3-based positive electrodes,” Journal of Power Sources, vol. 174, pp. 554−559, 2007
[36] J. H. Kim, C.W. Park, Y. K. Sun,” Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials,” Solid State Ionics, vol. 164, pp. 43-49, 2003
[37] J. M. Kim, S. Tsuruta, N. Kumagai,” Electrochemcial properties of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2(0≤x≤1) solid solutions prepared by poly-vinyl alcohol(PVA) method,” Electrochemistry Communications, vol. 9, pp. 103-108, 2007
[38] A. Tang , K. Huang. “Structure and electrochemical properties of Li1+yNi0.5AlxMn0.5−xO2synthesized by a new Sol-Gel method,” Materials Chemistry and Physics, vol. 93, pp. 6-9, 2005
[39] K. Numata, C. Sakaki, S. Yamanaka,” Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3,” Solid State Ionics, vol. 117, pp. 257-263, 1999
[40] X. K. Huang, Q. S. Zhang, H.T. Chang, ” Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances,” Journal of The Electrochemical Society, vol. 156, pp. A162−A168, 2009
[41] Y. J. Lee, M. G. Kim, J. Cho,” Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material,” Nano Letters, vol. 8, pp. 957-961, 2008
[42] M. G. Kim, M. Jo, Y. S. Hong,”Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode,” Chemical Communications, vol. 2, pp. 218-220, 2009
[43] Y. C. Sun, Y. G. Xia, H. Noguchi, “ The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries,” Journal of Power Sources, vol. 159, pp. 1353-1359, 2006
[44] Y. J. Kim, Y. S. Hong, M. G. Kim, “Li0.93 [Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite,” Electrochemistry Communications, vol. 9, pp.1041-1046, 2007
[45] 蘇繼桃,蘇玉長,賴智廣,”製備鎳、鈷、錳複合氫氧化物的熱力學分析,”電池工業, vol.13, pp.18-22, 2008
[46] 鄭建明,吳曉彪,楊勇,”富鋰鄭及材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2的合成優化及表徵,”電源技術,vol. 35, pp.1188-1192,2011
[47] 王昭,吳鋒,蘇岳鋒,包麗穎,陳來,李寧,陳實,”鋰離子電池正極材料 xLi2MnO3.(1-x)Li[Ni1/3Mn1/3Co1/3]O2的製備及表徵,”物理化學學報 ,vol. 28,pp.823-830, 2012
[48] H. Koga, L. Croguennec, P. Mannessiez, M. Ménétrier, F. Weill,L. Bourgeois, M. Duttine, E. Suard and C. Delmas,” Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium‑Ion Batteries Insights Into Their Structure,” Journal of Physical Chemistry C, vol.116, pp.13497-13506, 2012
[49] 趙煜娟,馮海蘭,趙春松,孫召琴,”鋰離子電池富鋰正極材料xLi2MnO3•(1−x)LiMO2 (M=Co, Fe, Ni1/2Mn1/2…)的研究進展,”無機材料學報 ,vol. 26, pp. 673-679, 2011
[50] A. Ito, D. Li, Y. Sato, M.Arao, M. Watanabe,M. Hatano, H. Horie, Y. Ohsawa,” Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2,” Journal of Power Sources, vol. 195, pp. 567–573, 2010
[51] M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek and S. A. Hackney, “Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries,” Journal of Materials Chemistry, vol. 17, pp. 3112-3125, 2007
[52] G. Singh, R. Thomas, A. Kumar, R. S. Katiyar and A. Manivannan, ” Electrochemical and Structural Investigations on ZnO Treated 0.5 Li2MnO3-0.5LiMn0.5Ni0.5O2 Layered Composite Cathode Material for Lithium Ion Battery,” Journal of The Electrochemical Society, vol. 159, pp. A470-A478, 2012
[53] Y. Wu and A. Manthiram, “Effect of Surface Modifications on the Layered Solid Solution Cathodes (1-z) Li[Li1/3Mn2/3]O2 – (z) Li[Mn0.5-yNi0.5-yCo2y]O2,” Solid State Ionics, vol. 180, pp. 50-56,2009
[54] Y.J. Zhao, C.S. Zhao, H. L. Feng, Z.Q. Sun and D.G. Xia, “Enhanced Electrochemical Performance of Li[Li0.2Ni0.2Mn0.6]O2 Modified by Manganese Oxide Coating for Lithium-Ion Batteries,” Electrochemical and Solid-State Letters, vol. 14, pp. A1-A5, 2011
[55] S.-H. Kang , M. M. Thackeray, “Enhancing the rate capability of high capacity xLi2MnO3 - (1-x)LiMO2 (M = Mn,Ni, Co) electrodes by Li–Ni–PO4 treatment,” Electrochemistry Communications, vol. 11, pp. 748–75, 2009
[56] B. Liu, Q. Zhang, S.C. He, Y. Sato, J. W. Zheng, D.C. Li, “Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4,” Electrochimica Acta, vol. 56, pp. 6748– 6751, 2011
[57] 吳曉彪,董志鑫,鄭建明,楊勇,”鋰離子電池正極材料Li[ Li 0. 2Mn 0. 54 Ni 0. 13 Co 0. 13 ]O2的碳包覆研究,”廈門大學學報,vol. 47, pp. 224-227, 2008
[58] D. Y. W. Yu, K. Yanagida and H. Nakamura, “Surface Modification of Li-Excess Mn-based Cathode Materials,” Journal of The Electrochemical Society, vol. 157, pp. A1177-A1182, 2010
[59] C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey and M. M. Thackeray, “Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3 • (1 - x)LiMn0.333Ni0.333Co0.333O2 (0 ≦ x ≦0.7),” Chemistry of Materials, vol. 20, pp. 6095-6106, 2008
[60] M. H. Rossouw, M. M. Thackeray, “Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications,” Materials Research Bulletin, vol. 26, pp. 463-473, 1991
[61] S. H. Park, Y. K. Sun, “Synthesis and electrochemical properties of layered Li[Li0.25Ni(0.275−x/2)AlxMn(0.575−x/2)]O2 materials prepared by Sol-Gel method,” Journal of Power Sources, vol. 119-121, pp. 161-165, 2003
[62] L. F. Jiao, M. Zhang, H. T. Yuan,” Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]Ox (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries,” Journal of Power Sources, vol. 167, pp. 178-184, 2007
[63] D. Kim, J. Gim, J. Lim, S. Park, J. Kim, “Synthesis of xLi2MnO3_(1 _ x)LiMO2 (M = Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties,” Materials Research Bulletin, vol. 45, pp. 252–255, 2010
[64] S.J. Shi, J.P. Tu, Y.J. Mai, Y.Q. Zhang, C.D. Gu, X.L. Wang, “Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries,” Electrochimica Acta, vol. 63, pp. 112-117, 2012
[65] 王英平,王先友,隗小山,魏啟亮,楊秀康,楊順毅,舒洪波,白艷松,無強,”以Mn3O4為前驅體製備LiMn2O4及其性能,”中國有色金屬學報,vol.22, pp. 567-573, 2010
[66] S. T. Myung, N. Kumagai, S. Komaba, H. T. Chung, “Effects of Al doping on the microstructure of LiCoO2 cathode materials,” Solid State Ionics, vol. 139, pp. 47- 56, 2001
[67] Y. Kim, H. S. Kim, S. W. Martin, “Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries,” Electrochimica Acta, vol. 52, pp. 1316-1322, 2006
[68] http://srdata.nist.gov/xps/
[69] A.R.Armstrong and P.G.Bruce, “Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries,” Nature, vol. 381, pp. 499-500, 1996
[70] 范廣新,曾躍武,陳榮升,呂光烈,”正交層狀LiMnO2在電化學循環過程中的相變和活化特性,” 無機化學學報,vol. 24, pp. 944-949, 2008
[71] Y. M. Chiag, H. Wang, Y.I. Jang, “Electrochemically Induced Cation Disorder and Phase Transformations in Lithium Intercalation Oxides, vol. 13, pp. 53-63, 2001
[72] J.M. Paulsen, J.R. Dahn, “Phase Diagram of Li-Mn-O Spinel in Air,” Chemistry of Materials, vol.11, pp. 3065-79,1999
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *