帳號:guest(3.16.137.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):費遠婷
論文名稱(中文):中溫固態燃料電池電解質之電性與熱穩定性分析
論文名稱(外文):Thermal Stability and Electrical Conductivity of Electrolyte Materials for IT-SOFC
指導教授(中文):簡朝和
口試委員(中文):簡朝和
林樹均
吳振名
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031556
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:33
中文關鍵詞:中溫固態氧化物燃料電池BaCeO3導電度化學穩定性
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了改善BaCe0.8-xZrxDy0.2O3-δ材料系統的熱穩定性,本研究以化學法合成SrCe0.8-xZrxDy0.2O3-δ (x=0.1-0.4) 和BaCe0.5M0.3Dy0.2O3-δ (M = Ti, Sn, Hf, Zr),分析其成分對導電率與熱穩定性的影響。實驗結果發現導電度與晶格常數和結構對稱性成正相關;熱穩定性則隨著結構對稱性和摻雜離子的電負度 (Electronegativity) 增加而提高,且不同成分的相對穩定性與熱力學估算的趨勢接近。BaCe0.5Sn0.3Dy0.2O3-δ在本實驗的所有成分中對二氧化碳和水具有最佳的熱穩定性,兼具不錯的導電度。進一步探討其缺陷化學,發現導電度與氧分壓的1/4次方有線性關係,與實驗結果相符。由離子與電洞遷移數得知,BaCe0.5Sn0.3Dy0.2O3-δ在低氧分壓下為純離子導體,在高氧分壓下則為離子與電洞的混合導體,有潛力做為IT-SOFC的陽極、電解質和陰極材料。
目錄……………………………………………………………………I
圖目錄…………………………………………………………………III
表目錄…………………………………………………………………VII
1. 前言…………………………………………………………………1
2. 實驗方法……………………………………………………………5
2.1 起始原料…………………………………………………………5
2.2 粉體合成…………………………………………………………5
2.2.1 合成SrCe0.8-xZrxDy0.2O3-δ (x=0.1-0.4) 粉末………………5
2.2.2 合成BaCe0.5M0.3Dy0.2O3-δ , M = Ti, Zr, Sn, Ce, Hf 粉末…6
2.3 試片製作…………………………………………………………7
2.4 基本性質測試……………………………………………………8
2.4.1 熱重熱差分析………………………………………………8
2.4.2 X-ray繞射分析……………………………………………8
2.4.3 顯微結構觀察………………………………………………8
2.5 導電率量測………………………………………………………8
2.6 熱穩定性測試……………………………………………………9
2.6.1 對二氧化碳之穩定性………………………………………9
2.6.2 對水之穩定性……………………………………………10
3. 結果與討論…………………………………………………………11
3.1 SrCe0.8-xZrxDy0.2O3-δ與BaCe0.8-xZrxDy0.2O3-δ (x=0.1-0.4)……11
3.1.1 導電率………………………………………………………11
3.1.2 對二氧化碳之熱穩定性……………………………………13
3.2 BaCe0.5M0.3Dy0.2O3-δ , M = Ti, Zr, Sn, Ce, Hf…………………15
3.2.1 導電率………………………………………………………16
3.2.2 對二氧化碳之熱穩定性……………………………………17
3.2.3 對水之熱穩定性……………………………………………19
3.2.4 BaCe0.5Sn0.3Dy0.2O3-δ之導電機制…………………………21
4. 結論………………………………………………………………24
5. 參考文獻……………………………………………………………26
[1] N. Q. Minh, “Ceramic Fuel-Cells,” J. Am. Ceram. Soc., 76, 563-88 (1993).
[2] T. H. Etsell and S. N. Flengas, “Electrical Properties of Solid Oxide Electrolytes,” Chem. Rev., 70, 339-76 (1970).
[3] J. W. Fergus, “Electrolytes for Solid Oxide Fuel Cells,” J. Power Sources, 162, 30-40 (2006).
[4] S. M. Haile, “Fuel Cell Materials and Components,” Acta Mater., 51, 5981-6000 (2003).
[5] E. Fabbri, D. Pergolesi, and E. Traversa, “Materials Challenges toward Proton-Conducting Oxide Fuel Cells: a Critical Review,” Chem. Soc. Rev., 39, 4355-69 (2010).
[6] K. D. Kreuer, “Proton-Conducting Oxides,” Annu. Rev. Mater. Res., 33, 333-59 (2003).
[7] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton Conduction in Sintered Oxides based on BaCeO3,” J. Electrochem. Soc., 135, 529-33 (1988).
[8] A. S. Nowick, and Y. Du, “High-Temperature Protonic Conductors with Perovskite-Related Structures,” Solid State Ionics, 77, 137-46 (1995).
[9] N. Bonanos, “Transport Properties and Conduction Mechanism in High-Temperature Protonic Conductors,” Solid State Ionics, 53, 967-74 (1992).
[10] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, “Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ,” Science, 326, 126-9 (2009).
[11] S. Hamakawa, T. Hibino, and H. Iwahara, “Prospect of Hydrogen Technology Using Proton-Conducting Ceramics,” Solid State Ionics, 168, 299-301 (2004).
[12] N. Bonanos, K. S. Knight, and B. Ellis, “Perovskite Solid Electrolytes: Structure, Transport Properties and Fuel Cell Applications,” Solid State Ionics, 79, 161-70 (1995).
[13] N. Bonanos, “ Oxide-Based Protonic Conductors: Point Defects and Transport Properties,” Solid State Ionics, 145, 265-74 (2001).
[14] 潘昭璇,〈有機化學合成法製備中溫固態燃料電池陽極材料及其電性分析〉,國立清華大學材料科學工程學系100年碩士論文
[15] M. J. Scholten, J. Schoonman, J. C. Vanmiltenburg, H. A. J. Oonk, “ Synthesis of Strontium and Barium Cerate and Their Reaction with Carbon Dioxide,” Solid State Ionics, 61, 83-91 (1993).
[16] S. Gopalan and A. V. Virkar, “Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells,” J. Electrochem. Soc., 140, 1060-65 (1993).
[17] C. W. Tanner and A. V. Virkar, “Instability of BaCeO3 in H2O-Containing Atmospheres,” J. Electrochem. Soc., 143, 1386-9 (1996).
[18] F. L. Chen, O. T. Sorensen, G. Y. Meng, and D. K. Peng, “Chemical Stability Study of BaCe0.9Nd0.1O3−α High-Temperature Proton- Conducting Ceramic,” J. Mater. Chem., 7, 481-5 (1997).
[19] K. H. Ryu and S. M. Haile, “Chemical Stability and Proton Conductivity of Doped BaCeO3-BaZrO3 Solid Solutions,” Solid State Ionics, 125, 355-67 (1999).
[20] S. V. Bhide and A. V. Virkar, “Stability of BaCeO3-Based Proton Conductors in Water-Containing Atmospheres,” J. Electrochem. Soc., 146, 2038-44 (1999).
[21] N. Zakowsky, S. Williamson, and J. T. S. Irvine, “Elaboration of CO2 Tolerance Limits of BaCe0.9Y0.1O3−δ Electrolytes for Fuel Cells and Other Applications,” Solid State Ionics, 176, 3019-26, (2005).
[22] A. Tomita, K. Tsunekawa, T. Hibino, S. Teranishi, Y. Tachi, and M. Sano, “Chemical and Redox Stabilities of a Solid Oxide Fuel Cell with BaCe0.8Y0.2O3−α Functioning as an Electrolyte and as an Anode,” Solid State Ionics, 177, 2951-6, (2006).
[23] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic Conduction in Zr-Substituted BaCeO3,” Solid State Ionics, 138, 91-8 (2000).
[24] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-Stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites,” J. Mater. Sci., 36, 1149-60 (2001).
[25] Z. Zhong, “Stability and Conductivity Study of the BaCe0.9−xZrx- Y0.1O2.95 Systems,” Solid State Ionics, 178, 213-20 (2007).
[26] S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R. Gerbasi, “High Conductivity and Chemical Stability of BaCe1−x−yZrxYyO3−δ Proton Conductors Prepared by a Sol-Gel Method,” J. Mater. Chem., 18, 5120-8 (2008).
[27] E. Fabbri, A. D. Epifanio, E. D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8−xZrx)Y0.2O3−δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” Solid State Ionics, 179, 558-64 (2008).
[28] C. S. Tu, R. R. Chien, V. H. Schmidt, S. C. Lee, C. C. Huang, and C. L. Tsai, “Thermal Stability of BaZr0.8−xCexY0.2O2.9 Ceramics in Carbon Dioxide,” J. Appl. Phys., 105, 103504-1-7 (2009).
[29] P. Sawant, S. Varma, B. N. Wani, and S. R. Bharadwaj, “Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as Electrolyte for Proton Conducting SOFC,” Int. J. Hydrogen Energ., 37, 3848-56 (2012).
[30] T. Matzke and M. Cappadonia, “Proton Conductive Perovskite Solid Solutions with Enhanced Mechanical Stability,” Solid State Ionics, 86, 659-63, (1996).
[31] N. Osman, I. Abu Talib, and H. A. Hamid, “Heat Treatment and Characterization of Yb Doped Barium Cerate Prepared via Sol-Gel Method,” Sains Malays., 38, 103-7, (2009).
[32] E. Fabbri, T. Oh, S. Licoccia, E. Traversa, and E. D. Wachsman, “A Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes,” J. Electrochem. Soc., 156, B38-45 (2009).
[33] I. Kosacki and H. L. Tuller, “Mixed Conductivity in SrCe0.95Y0.05O3 Protonic Conductors, ” Solid State Ionics, 80, 223-9 (1995).
[34] K. D. Kreuer, W. Munch, M. Ise, T. He, A. Fuchs, U. Traub, and J. Maier, “Defect Interactions in Proton Conducting Perovskite-type Oxides,” Ber. Bunsenges. Phys. Chem., 101, 1344-50, (1997).
[35] L. Bi, Z. Tao, C. Liu, W. Sun, H. Wang, and W. Liu, “Fabrication and Characterization of Easily Sintered and Stable Anode-Supported Proton-Conducting Membranes,” J. Membrane Sci., 336, 1-6, (2009).
[36] Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, chap. 3, pp. 221-2, John Wiley & Sons., USA, 1997.
[37] A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborne, and R. C. MacDuff, “Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells,” Solid State Ionics, 52, 111-23, (1992).
[38] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, “Materials Design for Perovskite SOFC Cathodes,” Monatsh. Chem., 140, 985-99, (2009).
[39] H. Yokokawa, “Thermodynamic Stability of Perovskites and Related Compounds in Some Alkaline Earth-Transition Metal-Oxygen Systems,” J. Solid State Chem., 94, 106-20 (1991).
[40] T. Matsui, “Thermodynamic Properties of Ternary Barium Oxides,” Thermochim. Acta, 253, 155-65 (1995).
[41] E. Takayama-Muromachi and A. Navrotsky, “Energetics of Compounds (A2+ B4+ O3) with the Perovskite Structure,” J. Solid State Chem., 142, 244-56 (1988).
[42] M. Mogensen, D. Lybye, N. Bonanos, P. V. Hendriksen, and F. W. Poulsen, “Factors Controlling the Oxide Ion Conductivity of Fluorite and Perovskite Structured Oxides,” Solid State Ionics, 174, 279-86 (2004).
[43] I. Barin, Thermochemical Data of Pure Substances, chap. 12, pp. 133-1880, VCH, Weinheim, 1995.
[44] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst., A32, 751-67 (1976).
[45] L. Pauling, The Nature of the Chemical Bond, chap. 3, pp. 88-95, Cornell University, New York, 1960.
[46] K. Li and D. Xue, “Estimation of Electronegativity Values of Elements in Different Valence States,” J. Phys. Chem. A, 110, 11332-7 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *