帳號:guest(18.117.78.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂芳瑋
作者(外文):Lu, Fang-Wei
論文名稱(中文):透明可撓式氮摻雜石墨烯場效電晶體之研究
論文名稱(外文):Investigation on the Nitrogen-doped Graphene for Synthesizing Flexible Transparent Field Effect Transistor
指導教授(中文):戴念華
口試委員(中文):齊正中
邱博文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031546
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:氮摻雜石墨烯電晶體
外文關鍵詞:N-doped grapheneTransistor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
石墨烯(graphene)具有優良的化學穩定性、高載子遷移率、獨特的電學與光學性質以及原子層級的尺寸,吸引研究者的注意,這些特殊的性質使得石墨烯被考慮可能取代矽材料作為電子元件。本研究以化學氣相沉積系統於電解拋光銅箔上成長大面積的氮摻雜單層石墨烯,並轉印至Polyethylene Terephthalate (PET)基板上製作可撓性透明場效電晶體。研究中使用拉曼光譜儀、場發射電子顯微鏡、光學顯微鏡探討石墨烯成長的參數及轉印結果,並以原子力顯微鏡量測單層石墨烯的厚度,以及紫外光-可見光光譜儀分析石墨烯的吸光率,再以多探針量測系統量測電晶體的載子遷移率與撓曲前後的性質。研究結果顯示,於電解拋光銅箔上成長氮摻雜單層石墨烯,其厚度、吸光率與載子遷移率分別為0.4~0.8 nm、2.34 %與16200 cm2/V∙s,而彎曲測試顯示其曲率半徑大於1.0 cm時對載子遷移率無明顯變化。本研究亦證實使用電解拋光技術有助於提升石墨烯電晶體元件的性質,其載子遷移率較未使用拋光技術的元件高出2至3倍之多。最後將氮摻雜石墨烯元件暴露於大氣環境下1個月後,仍然保有其N型傳導特性,顯示本研究所製備出的氮摻雜石墨烯場效電晶體呈現高穩定性。
Graphene possesses excellent chemical stability, high carrier mobility, and unique optoelectrical properties at atomic level, which was considered as a promising material to replace Si in semiconductor industry. In this study, the chemical vapor deposition method was adopted to grow N-doped graphene on the electropolished Cu foil, followed by transferring the as-synthesized graphene to polyethylene terephthalate substrate for the fabrication of flexible transparent field-effect-transistor. Graphene growth and transferring were characterized using Raman spectrum, field-emission scanning electron microscopy, and optical microscopy, and thickness and absorptace were measured using atomic force microscopy and UV-visible spectrometer, respectively. Carrier mobilities of the fabricated FET with/without bending were measured using a multi-probe system.
The results indicate that the thickness, absorptance, and carrier mobility of the N-doped graphene were 0.4~0.8 nm, 2.34 %, and 16200 cm2/V∙s, respectively. The carrier mobility of the bended FET was not significantly affected while the curvature radius higher than 1.0 cm. We also demonstrated that the electropolish technique was beneficial for improving the electrical performances of the graphene-based FET with 2 or 3-times higher than those without electropolish treatment. Furthermore, the N-type character was still remained even the N-doped graphene FET was exposed in the air atmosphere for one month, showing the highly air-stable of the N-doped graphene FET.
摘要.............................................................................................................I
Abstract......................................................................................................II
致謝..........................................................................................................III
目錄...........................................................................................................V
圖目錄......................................................................................................IX
第一章 緒論..............................................................................................1
1-1前言..............................................................................................1
1-2研究目的......................................................................................1
第二章 文獻回顧......................................................................................3
2-1石墨烯簡介..................................................................................3
2-1-1石墨烯的晶體結構...........................................................3
2-1-2石墨烯的能帶結構...........................................................4
2-2石墨烯的製備方法......................................................................5
2-2-1機械剝離法.......................................................................5
2-2-2碳化矽裂解法...................................................................6
2-2-3化學還原法.......................................................................6
2-2-4化學氣相沉積法...............................................................7
2-3銅箔電解拋光..............................................................................9
2-3-1電解拋光簡介...................................................................9
2-3-2以拋光銅箔成長石墨烯..................................................11
2-4石墨烯之摻雜............................................................................12
2-4-1取代性摻雜.....................................................................12
2-4-2表面性摻雜.....................................................................14
2-5鑑定石墨烯層數之方法............................................................15
2-5-1穿透式電子顯微鏡.........................................................15
2-5-2原子力顯微鏡.................................................................16
2-5-3光學顯微鏡.....................................................................16
2-5-4拉曼光譜儀.....................................................................17
第三章 實驗步驟與研究方法................................................................36
3-1實驗步驟....................................................................................36
3-1-1銅箔前處理.....................................................................36
3-1-2電解拋光銅箔.................................................................36
3-1-3石墨烯的製備.................................................................36
3-1-3氮參雜石墨烯的製備.....................................................37
3-1-4轉印製程.........................................................................37
3-1-5石墨烯元件製備.............................................................38
3-2試片分析....................................................................................39
3-2-1拉曼光譜分析.................................................................39
3-2-2紫外光-可見光光譜儀....................................................39
3-2-3原子力顯微鏡.................................................................40
3-2-4化學分析電子能譜儀.....................................................40
3-2-5奈米級歐傑電子能譜儀.................................................40
3-2-6電壓與電流量測分析.....................................................40
第四章 結果與討論................................................................................50
4-1成長單層石墨烯於銅箔上及其性質分析................................50
4-1-1銅箔前處理-醋酸的作用................................................50
4-1-2單層石墨烯性質之分析.................................................51
4-2成長單層石墨烯於電解拋光銅箔上及其性質分析................53
4-2-1電解拋光參數對銅箔表面形貌的影響.........................53
4-2-2電解拋光銅箔對於石墨烯性質之影響.........................55
4-3成長氮摻雜單層石墨烯於電解拋光銅箔上及其性質分析....57
4-3-1以氨水為氮摻雜源.........................................................58
4-3-2以氨氣為氮摻雜源.........................................................60
4-3-3氮摻雜石墨烯性質分析.................................................61
4-4可撓式石墨烯場效電晶體電性量測.......................................62
4-4-1氮摻雜對石墨烯元件電性之影響.................................62
4-4-2拋光對電性之影響.........................................................64
4-4-3彎曲測試.........................................................................65
4-4-4穩定度測試 ...................................................................65
第五章 結論............................................................................................84
參考文獻..................................................................................................86
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode”, Physical Review, Vol. 74, pp. 230-231, 1948.
[2] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Honec, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, Vol. 146, pp. 351-355, 2008.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, 2004.
[5] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics, Vol. 4, pp. 611-622, 2010.
[6] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-1314, 2009.
[7] A. H. Castro Neto, F. Guinea, N. M. R. PeresK. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009.
[8] P. R. Wallace, “The band theory of graphite”, Physical. Review, Vol. 71, pp. 622-634, 1947.
[9] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler and Tapash Chakraborty, “Properties of graphene: a theoretical perspective”, Advances in Physics, Vol. 59, No. 4, pp. 261-482, 2010.
[10] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
[11] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, Vol. 143, pp. 92-100, 2007.
[12] D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, “The chemistry of graphene oxide”, Chemical Society Reviews, Vol. 39, pp. 228-240, 2010.
[13] B. C. Brodie, “On the atomic weight of graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
[14] L. Staudenmaier, “Preparation of graphitic acid”, Berichte der Deutschen Chemischen Gesellschaft, Vol. 31, pp. 1481-1487, 1898.
[15] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol. 80, p. 1339, 1958.
[16] S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, Vol. 4, pp. 217-224, 2009.
[17] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009.
[18] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, Vol. 45, pp. 1558-1565, 2007.
[19] S. Y. Chee, H. L. Poh, C. K. Chua, F. Šaněk, Z. Sofer and M. Pumera, “Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide”, Physical Chemistry Chemical Physics, Vol. 14, pp. 12794-12799, 2012.
[20] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek and M. Siaj, “Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors”, Carbon, Vol. 49, pp. 4204-4210, 2011.
[21] G. Kalita, K. Wakita, M. Umeno, Y. Hayashi and M. Tanemura, “Synthesis of continuous graphene on metal foil for flexible transparent electrode application”, in IEEE 5th International Nanoelectronics Conference, pp. 281-284, 2013.
[22] J. Wintterlin and M. L. Bocquet, “Graphene on metal surfaces”, Surface Science, Vol. 603, pp. 1841-1852, 2009.
[23] P. Sutter, J. T. Sadowski, and E. Sutter, “Graphene on Pt (111): growth and substrate interaction”, Physical Review B, Vol. 80, pp. 245411 (10), 2009.
[24] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu and H. Gao, “Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001)”, Advanced Materials, Vol. 20, pp. 1-4, 2008.
[25] J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. M. zu Heringdorf, R. van Gastel, B. Poelsema and T. Michely, “Growth of graphene on Ir (111)”, New Journal of Physics, Vol. 11, pp. 023006 (22), 2009.
[26] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, pp. 113103 (3), 2008.
[27] C. Mattevi, H. Kim and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper”, Journal of Materials Chemistry, Vol. 21, pp. 3324-3334, 2011.
[28] 劉書宏,「銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究」,博士論文,國立交通大學,中華民國九十五年七月
[29] S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, Y. H. Li and M. S. Feng, “Microleveling mechanisms and applications of electropolishing on planarization of copper metallization”, Journal of Vacuum Science & Technology B, Vol. 20, pp. 2149-2153, 2002.
[30] 洪榮洲,「結合細微放電與電解拋光之微孔加工研究」,碩士論文,國立中央大學,中華民國九十三年六月
[31] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith and A. T. C. Johnson, “Effect of substrate roughness and feedstock concentration on growth of wafer-Scale graphene at atmospheric pressure”, Chemistry of Materials, Vol. 23, pp. 1441-1447, 2011.
[32] H. Liu, Y. Liu and D. Zhu, “Chemical doping of graphene”, Chemistry of Materials, Vol. 21, No. 10, pp. 3253-3496, 2011.
[33] B. Guo, L. Fang, B. Zhang and J. R. Gong, “Graphene doping: a review”, Nanotechnology, Vol. 1, No. 4, pp. 80-89, 2011.
[34] H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng and Z. Liu, “Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition”, Small, Vol. 9, No. 8, pp. 1316-1320, 2013.
[35] D. We, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Letters, Vol. 9, No. 5, pp. 1752-1758, 2009.
[36] B. Gu, Q. Liu, E. Chen, H. Zhu, L. Fang and J. R. Gong, “Controllable N-doping of graphene”, Nano Letters, Vol. 10, pp. 4975-4980, 2010.
[37] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. BLAKE, M. I. Katsnelson and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials, Vol. 6, pp. 652-655, 2007.
[38] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, “Doping graphene with metal contacts”, Physical Review Letters, Vol. 101, pp. 026803(4), 2008.
[39] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied Physics Letters, Vol. 91, pp. 063124 (3), 2007.
[40] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol. 61, pp. 14095-14107, 2000.
[41] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy”, Nano Letters, Vol. 10, pp. 751-758, 2010.
[42] K. Brenner, Y. Yang and R. Murali, “Edge doping of graphene sheets”, Carbon, Vol. 50, pp. 637-645, 2012.
[43] Andrea C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phononcoupling, doping and nonadiabatic effects”, Solid State Communications, Vol. 143, pp. 47-57, 2007.
[44] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports, Vol. 473, pp. 51-87, 2009.
[45] Y. Wang, Z. hua Ni, T. Yu, Z. X. Shen, H. min Wang, Y. hong Wu, W. Chen and A. T. S. Wee, “Raman studies of monolayer graphene: the substrate effect”, The Journal of Physical Chemistry C, Vol. 112, pp. 10637-10640, 2008.
[46] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Physical Review Letters, Vol. 97, pp. 187401 (4), 2006.
[47] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotechnology, Vol. 3, pp. 210-215, 2008.
[48] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liua and J. Shen, “Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid”, New Journal of Chemistry, Vol. 36, pp. 1385-1391, 2012.
[49] B. N. Szafranek, D. Schall, M. Otto, D. Neumaier and H. Kurz, “High on/off ratios in bilayer graphene field effect transistors realized by surface dopants”, Nano Letters, Vol. 11, pp. 2640-2643, 2011
[50] B. J. Kim, H. Jang, S-K. Lee, B. H. Hong, J-H. Ahn and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics”, Nano Letters, Vol. 10, pp. 3464-3466, 2010.
[51] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia”, Science, Vol. 324, pp. 768-771, 2009.
[52] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc and S. K. Banerjee, “Realization of a high mobility dual-gated graphene field effect transistor with Al2O3 dielectric”, Applied Physics Letters, Vol. 94, pp. 062107 (4), 2009.
[53] Z. Zhang, H. Xu, H. Zhong and L. M. Peng, “Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements”, Applied Physics Letters, Vol. 101, pp. 213103 (4), 2012.
[54] X. Yu, J. Kang, J. Zhang, L. Tian and Z. Yu, “Improving channel mobility in graphene-FETs by minimizing surface phonon scattering - a simulation study”, in Simulation of Semiconductor Processes and Devices, pp. 13-16, 2010.
[55] F. Chen, J. Xia, D. K. Ferry and N. Tao, “Dielectric screening enhanced performance in graphene FET”, Nano Letters, Vol. 9, No. 7, pp. 2571-2574, 2009.
[56] F. Chen, J. Xia, D. K. Ferry and N. Tao, “Ionic screening of charged-impurity scattering in graphene”, Nano Letters, Vol. 9, No. 4, pp. 1621-1625, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *