帳號:guest(3.144.98.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):侯明豔
作者(外文):Hou, Ming-Yan
論文名稱(中文):經由氣氛控制與碳披覆之鈦酸鋰的電化學特性與其在高功率鋰離子電池的應用
論文名稱(外文):Electrochemical Characteristics of Carbon-assisted Lithium Titanate with Atmosphere Control for High-power Lithium-ion Batteries
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):杜正恭
李志偉
石東益
口試委員(外文):Duh, Jenq-Gong
Lee, Jyh-Wei
Shih, Toung-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031542
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:120
中文關鍵詞:鈦酸鋰高分子熱裂解氧缺陷多孔結構交流阻抗分析
外文關鍵詞:Lithium titanatePolymer pyrolysisOxygen vacancyPorous structureAC impedance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:96
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
隨著各種再生能源的發展,開發鋰離子二次電池作為未來的電力的儲能系統與裝置也日益備受重視,例如應付風能與太陽能等間歇性再生能源輸出之定置型儲電系統以及裝載於電動車的動力鋰電池裝置。鈦酸鋰負極材料由於穩定的結構與安全工作電壓範圍,使其在鋰電池安全性與長循環壽命方面具有相當的優勢。然而鈦酸鋰是絕緣性材料,因此本研究致力於藉由結構缺陷與碳的批覆來提升導電度以改善其快速充放電性能。
論文第一部分探究還原性氣氛對於鈦酸鋰的影響,研究結果發現具有氧空缺之鈦酸鋰除了在導電性上的提升,鋰離子擴散速率也因為鈦酸鋰原子結構的些微改變而獲得改善。有鑑於在追求快速充放電性能時,導電度和鋰離子擴散能力須同時促進,因此論文第二部分提出一個結合高分子與還原性氣氛的改良式固態合成法,其合成的鈦酸鋰同時擁有多孔性結構、碳的導電網絡以及利於鋰離子擴散的結構,在5 C快速充放電之下能提供155 mAh/g的電容量(89%的鈦酸鋰理論電容, 175 mAh/g)且具有結構穩定性,在200圈循環測試仍能維持初始的電容量。
In the society that several alternative energy sources are developing, lithium ion batteries have being designed to meet the raising requirement of electric vehicle (EV) and back-up storage systems. Li4Ti5O12 is a promising anode material for both high-power and high-safety lithium-ion batteries (LIBs). Li4Ti5O12 possesses the advantages of high safety and long cycle life, due to robust spinel structure and no solid electrolyte interface (SEI) formation. However, Li4Ti5O12 is electron insulated. Hence, this study aims to improve the electron conductivity through atmosphere control and carbon-assistance to promote its high-rate performance.
Initially, the study probes into the effect of reductive atmosphere. Beyond the enhancement of electron conductivity, it is found that the lithium diffusion is also facilitated due to disorder structure. Furthermore, in view of that both lithium diffusivity and electron conductivity should be promoted for high rate capability, polymer-assisted solid-state method incorporated with reductive atmosphere is proposed. Porous structure, carbon network and disorder structure are synthesized under one-step synthesis, resulting in the outstanding electrochemical performance. The high-rate capacity of 5C reaches 155 mAh/g, 89% of theoretical value, and retained the initial value after 200 discharging/charging cycles.
List of Tables III
Figure Captions IV
Abstract VIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 The evolution of anode materials 2
1.3 Motivations and objectives in this study 4
Chapter 2 Literature Review 11
2.1 Introduction to lithium ion batteries 11
2.1.1 The evolution of lithium ion batteries 11
2.1.2 The reaction mechanism of lithium ion batteries 12
2.1.3 Anode material 14
2.2 Spinel Li4Ti5O12 anode materials 16
2.2.1 Basic concepts of Li4Ti5O12 16
2.2.2 Control of morphology 18
2.2.3 Control of intrinsic structure 21
2.2.4 Conductive surface coating 25
Chapter 3 Experimental Details 45
3.1 Synthesis procedure 45
3.1.1 Mesoporous Li4Ti5O12 via one-step synthesis 45
3.1.2 Mesoporous Li4Ti5O12-x with atmosphere controlled 45
3.1.3 Carbon-assisted porous Li4Ti5O12-x via one-step synthesis with atmosphere control 45
3.2 Characterization and analysis 46
3.2.1 Phase identification 46
3.2.2 Composition evaluation 46
3.2.3 Morphology observation 46
3.2.4 Thermal analysis 47
3.2.5 Surface area measurement 47
3.2.6 Bond structure investigation 47
3.2.7 Electrochemical characterization 48
Chapter 4 Results and Discussion 49
4.1 Effect of reductive atmosphere on lithium titanate 49
4.1.1 Phase identification 50
4.1.2 Morphology observation 52
4.1.3 Optical properties of lithium titanate 52
4.1.4 Electrochemical analysis 55
4.2 Carbon-assisted porous Li4Ti5O12-x via one-step synthesis with atmosphere control for high-rate capability and cycling retention 70
4.2.1 One-step synthesis with atmosphere control 70
4.2.2 Identification of phase and composition 72
4.2.3 Morphology observation 72
4.2.4 Optical properties of carbon and lithium titanate 75
4.2.5 Electrochemical analysis 77
4.3 The architecture design of lithium titanate for high-rate performance 81
Chapter 5 Conclusions 105
References 107
Appendix 113
1. K. E. Aifantis, S. A. Hackney and R. V. Kumar, High energy density lithium batteries: materials, engineering, applications, Wiley-VCH. (2010)

2. C. M. Hayner, X. Zhao and H. H. Kung, "Materials for Rechargeable Lithium-Ion Batteries," Annu. Rev. Chem. Biomol. Eng., 3 (2012) 445-471

3. M. Wakihara and O. Yamamoto, Lithium Ion Batteries: Fundamentals and Performance, Wiley-VCH. (1998)

4. K. Kariatsumari, H. Kume, H. Yomogita and P. Keys (2010). "The First Step is New Materials to Boost Capacity."

5. T. Ohzuku, A. Ueda and N. Yamamota, "Zero-Strain Insertion Material of Li[Lil/3Ti5/3]O4 for Rechargeable Lithium Cells," J. Electrochem. Soc., 142 5 (1995) 1431-1435

6. Y. R. Jhan and J. G. Duh, "Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density," Electrochim. Acta, 63 (2012) 9-15

7. B. Tian, H. Xiang, L. Zhang, Z. Li and H. Wang, "Niobium doped lithium titanate as a high rate anode material for Li-ion batteries," Electrochim. Acta, 55 (2010) 5453-5458

8. J. Wolfenstine, U. Lee and J. L. Allen, "Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere," J. Power Sources, 154 (2006) 287-289

9. S. Huang, Z. Wen, X. Zhu and X. Yang, "Research on Li4Ti5O12/CuxO Composite Anode Materials for Lithium-Ion Batteries," J. Electrochem. Soc., 152 7 (2005) A1301-A1305

10. H. G. Jung, S. T. Myung and C. S. Yoon, "Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries," Energy Environ. Sci., 4 (2011) 1345-1351

11. Y. S. Lin and J. G. Duh, "Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries," J. Power Sources, 196 (2011) 10698-10703

12. L. Kavan and M. Gra¨tzel, "Facile Synthesis of Nanocrystalline Li4Ti5O12 Spinel Exhibiting Fast Li Insertion," Electrochem. Solid-State Lett., 5 2 (2002) A39-A42

13. T. Yuan, R. Cai and Z. Shao, "Different Effect of the Atmospheres on the Phase Formation and Performance of Li4Ti5O12 Prepared from Ball-Milling-Assisted Solid-Phase Reaction with Pristine and Carbon-Precoated TiO2 as Starting Materials," J. Phys. Chem. C, 115 (2011) 4943-4952

14. C. Y. Lin and J. G. Duh, "Porous Li4Ti5O12 anode material synthesized by one-step solid state method for electrochemical properties enhancement," J. Alloys Compd., 509 (2011) 3682-3685

15. B. Li, C. Han, Y.-B. He, C. Yang, H. Du, Q.-H. Yang and F. Kang, "Facile synthesis of Li4Ti5O12/C composite with super rate performance," Energy Environ. Sci., 5 (2012) 9595-9602

16. C. Y. Lin, Y. R. Jhan and J. G. Duh, "Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material," J. Alloys Compd., 509 (2011) 6965–6968

17. B. Xu, D. Qian, Z. Wang and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries," Mater. Sci. Eng., R, 73 (2012) 51-65

18. J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chem. Mater., 22 (2010) 587-603

19. H. Shiiba, M. Nakayama and M. Nogami, "Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system," Solid State Ionics, 181 (2010) 994–1001

20. S. Scharner, W. Weppner and P. Schmid-Beurmann, "Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel," J. Electrochem. Soc., 146 3 (1999) 857-861

21. M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lützenkirchen-Hecht, R. Frahm and F. M. Mulder, "A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12," Adv. Mater., 18 (2006) 3169–3173

22. I. Belharouak, G. M. K. Jr. and K. Amine, "Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications," J. Power Sources, 196 (2011) 10344–10350

23. C. Y. Ouyang, Z. Y. Zhong and M. S. Lei, "ab initio studies of structural and electronic properties of Li4Ti5O12 spinel," Electrochem. Commun., 9 (2007) 1107–1112

24. C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher and M. M. Thackeray, "Studies of Mg-Substituted Li42xMgxTi5O12 Spinel Electrodes (0≦x≦1) for Lithium Batteries," J. Electrochem. Soc., 148 1 (2001) A102-A104

25. S. Huang, Z. Wen, X. Zhu and Z. Lin, "Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries," J. Power Sources, 165 (2007) 408–412

26. S. Huang, Z. Wen, X. Zhu and Z. Gu, "Preparation and electrochemical performance of Ag doped Li4Ti5O12," Electrochem. Commun., 6 (2004) 1093–1097

27. L. Cheng, X. L. Li, H. J. Liu, H. M. Xiong, P. W. Zhang and Y. Y. Xia, "Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation," J. Electrochem. Soc., 154 7 (2007) A692-A697

28. Y. Wang, H. Liu and K. Wang, "Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon," J. Mater. Chem., 19 (2009) 6789–6795

29. Y. R. Jhan and J. G. Duh, "Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction," J. Power Sources, 198 (2012) 294-297

30. Y. Qi, Y. Huang, D. Jia, S.-J. Bao and Z. P. Guo, "Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials," Electrochim. Acta, 54 (2009) 4772–4776

31. C. Jiang, M. Ichihara, I. Honma and H. Zhou, "Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode," Electrochim. Acta, 52 (2007) 6470–6475

32. E. M. Sorensen, S. J. Barry and H.-K. Jung, "Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties," Chem. Mater., 18 (2006) 482-489

33. S. Huang, Z. Wen, Z. Gu and X. Zhu, "Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5−xFyO12−y," Electrochim. Acta, 50 (2005) 4057–4062

34. J. Wolfenstine and J. L. Allen, "Electrical conductivity and charge compensation in Ta doped Li4Ti5O12," J. Power Sources, 180 (2008) 582–585

35. K. S. Park, A. Benayad, D. J. Kang and S. G. Doo, "Nitridation-Driven Conductive Li4Ti5O12 for Lithium Ion Batteries," J. AM. CHEM. SOC., 130 (2008) 14930–14931

36. M. Inagaki, "Carbon coating for enhancing the functionalities of materials," Carbon, 50 (2012) 3247-3266

37. G. N. Zhu, C. X. Wang and Y. Y. Xia, "A Comprehensive Study of Effects of Carbon Coating on Li4Ti5O12 Anode Material for Lithium-Ion Batteries," J. Electrochem. Soc., 158 2 (2011) A102-A109

38. G. N. Zhu and H. J. Liu, "Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries," Energy Environ. Sci., 4 (2011) 4016-4022

39. X. Hu, Z. Lin and K. Yang, "Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction," Electrochim. Acta, 56 (2011) 5046–5053

40. L. Shen, H. Li and E. Uchaker, "General Strategy for Designing Core−Shell Nanostructured Materials for High-Power Lithium Ion Batteries," Nano Lett., 12 (2012) 5673-5678

41. K. Ariyoshi, R. Yamato and T. Ohzuku, "Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries," Electrochim. Acta, 51 (2005) 1125–1129

42. M. S. Song, A. Benayad, Y. M. Choi and K. S. Park, "Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity," Chem. Commun., 48 (2012) 516-518

43. H. Schneider, P. Maire and P. Novák, "Electrochemical and spectroscopic characterization of lithium titanate spinel Li4Ti5O12," Electrochim. Acta, 56 (2011) 9324-9328

44. R. B. Hadjean, J. Pierre and P. Ramos, "Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries," Chem. Rev., 110 (2010) 1278-1319

45. I. A. Leonidov, O. N. Leonidova and L. A. Perelyaeva, "Structure, Ionic Conduction, and Phase Transformations in Lithium Titanate Li4Ti5O12," Phys. Solid State, 45 11 (2003)

46. C. M. Julien, M. Massot and K. Zaghib, "Structural studies of Li4/3Me5/3O4 (Me=Ti, Mn) electrode materials: local structure and electrochemical aspects," J. Power Sources, 136 (2004) 72-79

47. M. Wagemaker, E. R. H. v. Eck and A. P. M. Kentgens, "Li-Ion Diffusion in the Equilibrium Nanomorphology of Spinel Li4+xTi5O12," J. Phys. Chem. B, 113 (2009) 224–230

48. E. Barsoukov, J. H. Kim and D. H. Kim, "Parametric analysis using impedance spectroscopy: relationship between material properties and battery performance," J. New Mater. Electrochem. Sys., 3 (2000) 303-310

49. N. Takami, A. Satoh and M. Hara, "Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries," J. Electrochem. Soc., 142 2 (1995) 371-378

50. H. Fang, L. Li and G. Li, "A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4," J. Power Sources, 167 (2007) 223–227

51. Y. C. Jin and J. G. Duh, "Nanostructured LiNi0.5Mn1.5O4 cathode material synthesized by polymer-assisted co-precipitation method with improved rate capability," Mater. Lett., 93 (2013) 77-80

52. Z. Zhu, F. Cheng and J. Chen, "Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites," J. Mater. Chem. A, 1 (2013) 9484-9490

53. Y.-B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q.-H. Yang, J.-K. Kim and F. Kang, "Gassing in Li4Ti5O12-based batteries and its remedy," Sci. Rep., 2 913 (2012) 1-9
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *