帳號:guest(18.119.135.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃以陞
作者(外文):Yi-Sheng Huang
論文名稱(中文):改變轟擊電壓與氧含量對於MgO/NiO/Ni3Fe與SiO2/NiO/Ni3Fe微結構與交換偏壓的影響
論文名稱(外文):The effect of modifying the bombardment voltage and oxygen content on microstructures and exchange biases of MgO/NiO/Ni3Fe and SiO2/NiO/Ni3Fe
指導教授(中文):歐陽浩
指導教授(外文):Hao Ouyang
口試委員(中文):張晃暐
孫安正
口試委員(外文):Huang-Wei Chang
An-Cheng Sun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031539
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:144
中文關鍵詞:交換偏壓雙離子束濺鍍系統NiO/Ni3Fe雙層膜穿隧式電子顯微鏡
外文關鍵詞:Exchange biasDual ion beam deposition systemNiO/Ni3Fe bilayerHigh resolution transmission electron microscope
相關次數:
  • 推薦推薦:0
  • 點閱點閱:278
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本實驗藉由雙離子束濺鍍系統(dual ion beam deposition system,DIBD)鍍膜底層反鐵磁NiO (16nm)以及鐵磁層Ni3Fe(11nm),基板為Si(100)方向接著經過廠商處理成長出90 nm的SiO2與MgO(110)單晶基板。我們改變輔鍍射頻離子源的轟擊電壓(VRF=100、200),固定氧流量為0.3sccm,固定氬氣流量為2.5sccm以及固定射頻離子源的轟擊電壓(VRF=100)氬氣流量為2.5sccm、改變氧流量(0.2、0.3、0.4 sccm)。在室溫的情況下進行鍍膜沉積。我們可以從HRTEM( high resolution transmission electron microscope )分析中發現在SiO2基板中NiO與Ni3Fe主要優選方位為(111)(200)與(220)方向與XRD結果一致。當轟擊電壓從100V 10.71%O2提升為200V 10.71%O2時,我們從XRD峰值的面積可以發現轟擊電壓為100V時I220/ I111=0.42,當轟擊電壓為200V時I220/ I111=0.68,也就是當轟擊電壓變大時,其優選方位會從(111)轉變為(220),結構上的改變我們也從HRTEM中可以清楚看到,當轟擊電壓為100V時,其磁易軸方向有傾向於垂直介面的方位排列,與平行膜面的夾角為55.95゜,但在轟擊電壓提高為200V時,磁易軸的方位開始偏移直介面,與平行膜面的夾角為44.59゜,並且我們估算100V與200V 10.71%O2在NiO/Ni3Fe介面粗糙度,可以發現在100V SiO2中粗糙度為9.1 Å、200V為7.3 Å,在MgO基板上100V時粗糙度為3.9 Å、200V為2.6 Å,由此可發現當轟擊電壓上升時NiO/Ni3Fe介面會被轟的較為平坦,然而當氧含量降低到100V 7.41%O2時,在SiO2基板反鐵磁層中會有部分鐵磁成分Ni鑲嵌在NiO 基地裡,但在MgO(110)基板中並沒有在反鐵磁中發現鐵磁Ni的成分。
在MgO(110)基板中我們成功製備了100V 10.71 %O2 、200V 10.71% O2以及100V 7.41 %O2,從HRTEM的分析結果可以看到其zone軸為[001]並且成長方向為垂直介面(110)的方向進行磊晶成長,也因此我們限制了其優選方位。
我們藉由VSM (vibrating sample magnetometer)和SQUID(superconducting quantum interference device)去量測100V 10.71% O2 與200V 10.71% O2在SiO2與MgO(110)上的交換偏壓值,發現在SiO2基板上隨著轟擊電壓提高交換偏壓值上升是由於結構上的變化導致磁易軸的轉變,而在MgO基板上結構上並無改變,因為粗糙度的關係使得轟擊電壓提高交換偏壓值降低。
This thesis explains the exchange bias and microstructure on both MgO(110) single crystal and SiO2 substrate, using different bombardment voltage and different O2/Ar ratio to deposit antiferromagnetic NiO and ferromagnetic Ni3Fe. We deposit 16nm underlayer (antiferromagnetic NiO) and toplayer(ferromagnetic Ni3Fe) by dual ion beam deposition system. The substrates are 90nm SiO2 grew out from Si(100) and MgO(110) single crystal. We use different bombardment voltages of RF ion source (VRF=100 and 200), and we control two variables: the oxygen flow is 0.3sccm and the argon flow is 2.5sccm. In another experiment, we use different oxygen flows (0.2, 0.3 and 0.4sccm), and we control two variables: the bombardment voltage VRF is 100 and the argon flow is 2.5sccm. All of these depositions are done under normal temperature.
From the HRTEM(high resolution transmission electron microscope analysis), the main preferred orientations of NiO and Ni3Fe are (111), (200) and (220) on the SiO2 substrate. The result from HRTEM is consistent to that from XRD. From the areas of XRD peaks, we find that with 10.71% O2, I220/ I111 ratio is 0.42 when the bombardment voltage is 100V; however, when the bombardment voltage rises to 200V, I220/ I111 ratio becomes 0.68. This result shows that as bombardment voltage rises, its preferred orientation changes from (111) to (220). Besides, we also find obvious changes on the structure from HRTEM. When the bombardment voltage is 100V, the easy axis tends to be more perpendicular to interface (the angle between easy axis and parallel interface is 55.95。) ; however, when the bombardment voltage rises to 200V, the easy axis shifts away (the angle between easy axis and parallel interface becomes 44.59。). Moreover, we also calculate the interface roughness between NiO and Ni3Fe with 10.71% O2. On the SiO2 substrate, when the bombardment voltage is 100V, the roughness is 9.1 Å; when the bombardment voltage is 200V, the roughness is 7.3 Å. Nevertheless, on the MgO substrate, when the bombardment voltage is 100V, the roughness is 3.9 Å; when the bombardment voltage is 200V, the roughness is 2.6 Å. This result shows that as the bombardment voltage rises, the interface roughness decreases. In the experiment with 7.41% O2, we find that on the SiO2 substrate, there is ferromagnetic Ni in the antiferromagnetic layer (NiO). However, on the MgO substrate, this phenomenon doesn’t happen.
In the MgO substrate, we deposit 100V 10.71 %O2, 200V 10.71% O2 and 100V 7.41 %O2. From the result of HRTEM, we find that the zone axes of them are [001] and their growing directions are perpendicular to the interface with (110) orientations, which are epitaxial growth. Therefore, we confine the preferred orientations.
We measure the exchange biases of 100V 10.71% O2 and 200V 10.71% O2 on both SiO2 and MgO(110) through VSM (vibrating sample magnetometer) and SQUID(superconducting quantum interference device). We find that on the SiO2 substrate, because the changes on the structure makes the easy axis shift, exchange bias increases when the bombardment voltage rises. However, on the MgO substrate, because there is no change on the structure, we conclude it is the roughness that matters. The roughness makes the exchange bias decreases when the bombardment voltage rises.
致謝 I
摘要 II
Abstract III
口委提問 IV
總目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
一、前言 1
二、應用 2
三、研究動機 5
參考文獻 6
第二章文獻回顧與理論基礎 7
一、 磁性物質的種類 7
(一)鐵磁性物質 8
(二)順磁性物質 8
(三)反鐵磁性物質 9
(四)反磁性物質 10
(五)亞鐵磁性物質 10
二、磁異向性 11
(一)磁晶異向性 11
(二)形狀異向性 13
(三)磁彈性異向性 14
(四)引導磁異向性 15
(五)垂直異向性 15
三、薄膜沉積技術 17
(一)物理氣相沉積法 17
(二)濺鍍原理 17
(三)濺鍍分類 18
四、NiFe/NiO雙層薄膜 23
(一)鍍膜壓力 23
(二)氧氣流量或氧分壓比 24
(三)界面平整度 25
(四)界面平整度 26
(五)NiFe厚度 26
(六)NiO厚度 27
(七)離子轟擊 28
五、交換偏壓 29
(一)理想化界面模型 31
(二)界面間AFM磁區壁模型 33
(三)混亂場模型 35
(四)自旋翻轉垂直的界面間耦合模型 38
(五)未補償的界面間AFM自旋模型 41
(六)Domain state模型 43
(七)部份磁區模型 47
(八)自旋玻璃模型 49
(九)正交換偏壓產生機制 57
(十)氧化鎳中子繞射 58
六、 場發射穿透式電子顯微鏡原理 61
(ㄧ)高分辨電子顯微技術 61
(二)奈米微區EDS技術 63
(三)場發射掃描穿透式顯微鏡 63
(四)電子能量過濾電鏡技術 64
七、multislice method 基礎理論 67
參考文獻 74
第三章 實驗方法 78
一、實驗步驟 78
二、試片製備製備 78
(一)直流離子源工作機制 80
(二)射頻離子源工作機制 82
三、場發射穿透式電子顯微鏡 84
四、Cross-section TEM 試片製備 85
(一) 試片黏貼 85
(二)第一面研磨(SiO2基板) 86
(三)第二面研磨(SiO2基板) 87
(四)後續處理 88
(五) MgO試片研磨(第一面) 88
(六) MgO試片研磨(第二面) 89
五、X光繞射儀 100
六、原子力顯微鏡原理 102
七、超導量子干涉儀 105
八、震動樣品磁度儀 107
參考文獻 108
第四章 結果與討論 109
一、高解析穿透式電子顯微鏡分析 109
(一)模擬結構建立 109
(二)HRTEM相界定方法 110
(三)MgO介面分析方法 113
(四)HRTEM分析粗糙度方法 115
(五)100V和200V 10.71% O2(SiO2) 116
(六)100V和200V 10.71% O2(MgO) 120
(七)100V 7.41%O2(MgO和SiO2) 121
二、X-ray繞射分析(SiO2) 125
三、磁性量測(SQUID和VSM) 131
四、原子力顯微術表面性質量測(SiO2) 134
參考資料 139
第五章 結論 141


第一章
[1]Scott Mueller “Upgrading and Repairing PCs”(2003).
[2]W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956).
[3]J. Nogue ́s, T.J. Moran, D. Lederman, I.K. Schuller, K.V. Rao, Phys. Rev. B.
[4]黃榮俊、許峻瑜, 2007年諾貝爾物理獎—巨磁電阻的原理與應 用,科學新知, 426 期(2006 年06 月)。
[5]A. Fert et al, Phys. Rev. Lett, 61, 2472 (1988).
[6]R. R. Katti, proceedings of the IEEE,91,687(2003).
[7]國立雲林科技大學光電科學研究所碩士班碩士論文,雙絕緣層之垂直式磁穿隧接面結構及磁特性研究,張哲豪,民國95年。
[8]Z.Y.Liu and S.Adenwalla, J.Appl. Phys. 94, 1105(2003).
[9]G. H. Yu and L. R. Zeng , J.Appl. Phys. 90, 4039 (2001)
[10]D. Engel, A. Kronenberger, M. Jung, H. Schmoranzer, A. Ehresmann, A. Paetzild, K. Röll, J. Magn. Magn. Mater. 263,275(2003)
[11]J. X. Shen and M. T. Kief , J.Appl. Phys.79, 5008 (1996)
[12]De-Hau Han, Jian-Gang Zhu, and Jack H. Judy, J.Appl. Phys. 81, 304(1997)
[13]Chih-Huang Lai, Hideo Matsuyama, Robert L. White, Thomas C. Anthony, and Gary G. Bush, J.Appl. Phys. 79,6389(1996)
[14]R. P. Michel, A. Chaiken, C. T. Wang, and L. E. Johnson, Phys. Rev. B. 58,8566(1998)
第二章文獻回顧
[1]Scott Mueller “Upgrading and Repairing PCs”(2003).
[2]W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956).
[3] J. Nogue ́s, T.J. Moran, D. Lederman, I.K. Schuller, K.V. Rao, Phys. Rev. B.
[4]黃榮俊、許峻瑜, 2007年諾貝爾物理獎—巨磁電阻的原理與應 用,科學新知, 426 期(2006 年06 月)。
[5] A. Fert et al, Phys. Rev. Lett, 61, 2472 (1988).
[6] R. R. Katti, proceedings of the IEEE,91,687(2003).
[7]國立雲林科技大學光電科學研究所碩士班碩士論文,雙絕緣層之垂直式磁穿隧接面結構及磁特性研究,張哲豪,民國95年。
[8]Z.Y.Liu and S.Adenwalla, J.Appl. Phys. 94, 1105(2003).
[9]G. H. Yu and L. R. Zeng , J.Appl. Phys. 90, 4039 (2001)
[10]D. Engel, A. Kronenberger, M. Jung, H. Schmoranzer, A. Ehresmann, A. Paetzild, K. Röll, J. Magn. Magn. Mater. 263,275(2003)
[11]J. X. Shen and M. T. Kief , J.Appl. Phys.79, 5008 (1996)
[12]De-Hau Han, Jian-Gang Zhu, and Jack H. Judy, J.Appl. Phys. 81, 304(1997)
[13]Chih-Huang Lai, Hideo Matsuyama, Robert L. White, Thomas C. Anthony, and Gary G. Bush, J.Appl. Phys. 79,6389(1996)
[14]R. P. Michel, A. Chaiken, C. T. Wang, and L. E. Johnson, Phys. Rev. B. 58,8566(1998)
第二章文獻回顧
[1]Nicola A. Spaldin, "Magnetic Materials: Fundamentals and Applications”(2003)
[2]杜怡君, 磁性基礎特性及磁性材料應用.
[3]金重勳主編, ”Handbook of Magnetic Technologies”,中華民國磁性技術協會,(2002).
[4]B.D.C., Introduction to magnetic magerials(1972)
[5]Pu-Ling Lu and Stanley H. Charap, IEEE Trans. Magn., 30, 4230(1996)
[6]S. N. Piramanayagam, JOURNAL OF APPLIED PHYSICS 102, 011301 (2007)
[7]賴耿陽,“薄膜製作工藝學”,複漢出版社,1999年。
[8]K.H.Dae.K.H.Eun.C.Siyoung.Y.Y.Bong and L.D.Hyeon.“Microstructure Analyses of the Titanium Films Formed by the Ionized Sputtering Process”. Thin Solid Films.Vol.340,1999,pp.13-17
[9]S,M,Rossnagel,“Directional and Preferential Sputtering-Based Physical Vapor Deposition”. Thin Solid Films,Vol.263,1995,pp.1-12.
[10]吉田貞史、白目靖寬,“薄膜工程學”,全華科技圖書,2004年。
[11]http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm
[12]李岳霖,“熱處理對鎳鉻薄膜電阻特性之影響”,義守大學材料科學與工程學系碩士論文,2007年
[13]方宏聲,“電漿技術在平面顯示器製程之應用”,機械工業雜誌258期,pp.104-109。
[14]H.L.Hartnagel, A.K.Jain and C.Jagadish, “Smeiconducting Transparent Thin Films”,Published by Institute of Physics Publication,1995.
[15]電漿反應器與原理http://proj.meoeaidb.gov.tw/eta/Handout/2004071310.pdf
[16]董家齊、陳寬任,“奇妙的物質第四態-電漿”,科學發展,第354期,2002年6 月,pp.52-59。
17]陳世偉,“直流式磁控濺鍍鈷薄膜之表面結構變化與其應用於OME製程之研究”,國立成功大學材料科學與工程學系碩士論文,2004年。
[18]董寰乾、張六文,“濺鍍薄膜沉積技術簡介”,技術與訓練,第27卷,第4期,2002年6 月,pp.146-152。
[19]O.Milton, “Materials Science of Thin Film”Departement of Materials Science and Engineering Stevens Institute of Technology, Second Edition,2002.
[20]S.Saha and S.B.Krupanidhi, “Microstructure Related Influence on the Electrical Properties of Pulsed Laser Ablated(Ba,Sr)TiO(sub3)Thin Filnms.”, J. Appl. Phys.,Vol,2000,pp.3506-3513.
[21]Y.Mikami and K.Yamadam “Effect of DC Bias Voltage on the Deposition Rate for Ni Thin Films by RF-DC Coupled Unbalanced-Magnetron Sputtering.” Surface and Coatings Technology Vol,133-134,2000,295-300.
[22]G.K.Hubler and J.A.Sprague, “Energetic Particles in PVD Technology:Particle-Surface Interaction Processes and Enegy-Particle Relationships in Thin Film Deposition. ” Surface and Coatings Technology,Vol81,1996,pp.29-35.
[23]P.M.Witold, “Self-sustaioned Magnetron Co-Sputtering of Cu and Ni.”,Thin Solid Films,Vol.459,2004,pp.258-261
[24]宋增滄,“以迴旋濺鍍法成長氮化鋁薄膜之機制探討”,中原大學電子工程學系碩士論文,2003年六月。
[25]J. X. Shen and M. T. Kief , J. Appl. Phys.79, 5008 (1996)
[26]G. H. Yu and L. R. Zeng , J. Appl. Phys. 90, 4039 (2001)
[27]De-Hau Han, Jian-Gang Zhu, and Jack H. Judy, J. Appl. Phys.81, 304(1997)
[28] De-Hau Han, Jian-Gang Zhu, and Jack H. Judy, J. Appl. Phys.81, 4996(1997)
[29]G. H. Yu, C. L. Chai, F. W. Zhu, J. M. Xiao, and W. Y. Lai, Appl. Phys. Lett.78,1706(2001)
[30]Chih-Huang Lai, Hideo Matsuyama, Robert L. White, Thomas C. Anthony, and Gary G. Bush, J. Appl. Phys.79,6389(1996)
[31]Z. Y. Liu and S. Adenwalla, Appl. Phys. Lett. 82,2016(2003)
[32]D. Engel, A. Kronenberger, M. Jung, H. Schmoranzer, A. Ehresmann, A. Paetzild, K. Röll, J. Magn. Magn. Mater. 263,275(2003)
[33]R. P. Michel, A. Chaiken, C. T. Wang, and L. E. Johnson, Phys. Rev. B 58,8566(1998)
[34]W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413
[35]R. K. Zheng, Hui. Liu, Y. Wang, and X. X. Zhang, J. Appl. Phys. 96 (2004) 5370.
[36]T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys. 78 (1995) 1887.
[37]A. N. Dobrynin, D. N. levlev, K. Temst P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou, A. Vantomme, E. Piscopiello, and G. Van Tendeloo, Appl. Phys. Lett. 87, (2005) 012501 .
[38]J. Nogue’s, C. Leighton and Ivan K. Schuller, Phys. Rev. B 61 (2000-II) 1315.
[39]X. Ke, M. S. Rzchowski, L. J. Belenky, and C. B. Eom, Appl. Phys. Lett. 84, (2004) 5458
[40]J. Nogue’s and Ivan K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203.
[41]W.H. Meiklejohn, J. Appl. Phys. 33,1328(1962)
[42]A. E. Berkowitz, and Kentaro Takano, J. Magn. Magn. Mater. 200 (1999) 552.
[43]D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys. 62 (1987) 3047
[44]A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679.
[45]A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874.
[46]A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673.
[47]N. C. Koon, Phys. Rev. Lett. 78 (1997) 4865.
[48]T. C. Schulthess, W. H. Butler, Phys. Rev. Lett., 81 (1998) 4516.
[49]Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao,, J. Appl. Phys. 83 (1998) 6888
[50]Florin Radu , Hartmut Zabel , cond-mat.mtrl-sci , 0705.2055v1.
[51]U. Nowak , K. D. Usadel , Phys. Rev. B 66 (2002) 014430.
[52]U. Nowak, A. Misra, K. D. Usadel, J. Appl. Phys. 389 (2001) 7268.
[53]P. Miltényi ,M. Gierlings , J. Keller, B. Beschoten, Phys. Rev. Lett. 84, (2000) 4224.
[54]Joo-Von Kim, R. L. Stamps, Phys. Rev. B. 71, 094495(2005)
[55]F. Radu, A. Westphalen, K. Theis-Brohl, H. Zabel., J. Phys.:Condens. Matter 18, L29(2006)
[56]J. Nogues, D. Lederman, T. J. Moran, Ivan K. Schuller, Phys. Rev. Lett. 76, 4624 (1996)
[57]N. N. Phuoc, N. P. Thuy, N. A. Tuan, L. T. Hung, N. T. Thanh, N. T. Nam, J. Magn. Magn. Mater. 298, 43 (2006)
[58] W. L. Roth, Phys. Rev., 110, 6, 1958.
[59]Takashi Hotta, Seiji Yunoki, Matthias Mayr, and Elbio Dagotto,Phys.Rev.B 60(1999)22
[60]S.D. Berry, D.M. Lind, E. Lochner, K.A. Shaw, D. Hilton, R.W. Erwin, J.A. Borchers, Mater. Res. Soc. Symp. Proc. 313 (1993) 779.
[61]D.M. Lind, S.P. Tay, S.D. Berry, J.A. Borchers, R.W. Erwin, J. Appl. Phys. 73 (1993) 6886.
[62]G.P. Felcher, Y.Y. Huang, M. Carey, A.E. Berkowitz, J. Magn. Magn. Mater. 121 (1993) 105.
[63]S.S.P. Parkin, V.P. Deline, R.O. Hilleke, G.P. Felcher, Phys. Rev. B 42 (1990) 10538.
[64]J. H. Van Vleck, Electric and Magnetic Susceptibilities, Oxford University Press, New York, 1932, p. 282~310.
[65]R. R. Wenner, Thermochemical Calculations McGraw-Hill Book Company, Inc., New York, 1941, p. 145.
[66]中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜顯微結構之分析及其交換偏壓性質,劉家政,民95年。
[67]B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002
[68]Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998) , p133-138.
[69]JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html
第三章實驗方法
[1]Kenny Liu, Ion Beam Source, Veeco
[2]Veeco ion source(產品說明書)
[3]國立中央大學光電科學研究所碩士論文,離子輔助反應射頻磁控濺鍍紫外光薄膜之研究,戴國良,民國九十年
[4]汪建民, 材料分析. 中國材料科學學會.
[5]B. D. Cullity, Elements of X-RAY Diffraction, 3rd ed, (2001)
[6]中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民國97年
[7]SPM presentation for basic training, Veeco
[8]C.D. Wright, E.W.Hill:Reciprocity in magnetic force microscopy. Appl.Phys.Lett. 67,433-435 1995.
[9]物理雙月刊24卷5期(2002)
[10]B. D. Cullity, Elements of X-RAY Diffraction, 3rd ed, (2001)
第四章結果與討論
[1]Japanese Industrial Standards B 0601(1994)
[2]F. A. Smidth, International Materials Reviews 35, 61(1990)
[3]M. MARINOV: Thin Solid Films, 1977, 46, 267.
[4]T. c. HUANG, G. LIM, F. PARMIGIANI, and E. KAY; J. Vac. Sci.
Technol.1985, A3, 2161.
[5]F. PARMIGIANI, E. KAY, T. C. HUANG, 1. PERRIN, M. JURICH, and 1. D. SWALEN: Phys. Rev., 1986, B33, 879.
[6]D. DOBREV: Thin Solid Films, 1982, 92, 41.
[7]c. H. CHOI, R. RAMANARAYANAN, S.-N. MEl, and T.-M. LU: in'Materials modification and growth using ion beams', (ed.U: J. Gibson et al.), Mater. Res. Soc. Symp. Proc., 1987,93, 267.
[8]R. MESSIER and R. C. ROSS: J. Appl. Phys., 1982, 53, 6220.
[9]G. N. VAN WYK and H.1. SMITH: Nucl. Instrum. Meth.1980, 170,433.
[10]R. A. ROY, D. S. YEE, and J. 1. CUOMO: in 'Processing and characterization of materials used in ion beams', (ed. L. E.Rehn et al.), Mater. Res. Soc. Symp. Proc., 1989, 128,23.
[11]P. WANG, D. A. THOMPSON, and W. W. SMELTZER: Nucl. Instrum. Meth. Phys. Res., 1986, B16, 288.
[12]J. c. LIU and 1. W. MAYER: Nucl. Instrum. Meth. Phys. Rev., 1987, BI9/20, 538.
[13]E. KAY, F. PARMIGIANI, and w. PARRISH: J. Vac. Sci. Technol., 1988, A6, 3074.
[14]K. S. GRABOWSKI, R. A. KANT, and s. B. QUADRI: in 'Processing and characterization of materials used in ion beams', (ed. L. E. Rehn et al.), Mater. Res. Soc. Symp. Proc., 1989, 128, 279.
[15]Y. NAGAI, A. TAGO, and T. TOSHIMA: J. Vac. Sci. Technol.,1987, AS, 61.
[16]A.E. Berkowitz, Kentaro Takano , J. Magn. Magn. Mater. 200 (1999) 552-570
[17]Cathcart JV, Peterson GF, Sparks CJ (1969) J. Electrochem. Soc. 116:664.
[18]Herchl R, Khoi NN, Homma T, Smeltzer WW (1972) Proceedings of the Soil Science Society of America 4:35.
[19]Graham MJ, Hussey RJ, Cohen M (1973) J. Electrochem. Soc. 120:1523.
[20]Khoi NN, Smeltzer WW, Embury JD (1975) J. Electrochem. Soc. 122:1495.
[21]Czerwinski F, Szpunar JA (1998) Acta Mater. 46:1403.
[22]Czerwinski F, Zhilyaev A, Szpunar JA (1999) Corros. Sci. 41:1703.
[23]劉金聲,離子束沈積薄膜技術及應用,國防工業出版社 344-347(2003)
[24]J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology” (1989)
[25]逢甲大學材料科學與工程學系碩士論文,雙離子束濺鍍鋅鉬氧化物薄膜於聚醚堸基板之光電特性研究,何紹誌,民國98年。
[26]J.L.Yang, Y.S.Lai, J.S.Chen“ Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering”,Thin Solid Films 488(2005)242-246.
[27]P. ZIEMAN and E. KAY: J. Vac. Sci. Technol., 1983, AI, 512.
[28]P. Scherrer, Göttinger Nachrichten Gesell., Vol. 2, 1918, p 98.
[29]A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679.
[30]A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874.
[31]A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *