|
[1] S.R. Cowan, N. Banerji, W.L. Leong, A.J. Heeger, Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells, Adv. Funct. Mater. 22,(2012), 1116. [2] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the Open Circuit Voltage of Plastic Solar Cells, Adv. Funct. Mater. 11,(2001), 374. [3] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater. 18,(2006), 789. [4] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells, J. Appl. Phys. 94,(2003), 6849. [5] S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107,(2007), 1324. [6] C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80,(2002), 1288. [7] J. Xue, B.P. Rand, S. Uchida, S.R. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell, Adv. Mater. 17,(2005), 66. [8] Y.M. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer, Adv. Mater. 23,(2011), 1679. [9] A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Appl. Phys. Lett. 93,(2008), 221107. [10] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Accurate Measurement and Characterization of Organic Solar Cells, Adv. Funct. Mater. 16,(2006), 2016. [11] H.A. Macleod, Thin-Film Optical Filters, Fourth Edition, Taylor & Francis, 2010. [12] H. Oraizi, M. Afsahi, Analysis of Planar Dielectric Multilayers as Fss by Transmission Line Transfer Matrix Method (Tltmm), PIEE. 74,(2007), 217. [13] C.A. F. Fernandes, J.A. P. Morgado, The Static and Dynamic Transfer-Matrix Methods in the Analysis of Distributed-Feedback Lasers, in: J. Awrejcewicz (Ed.) Numerical Simulations of Physical and Engineering Processes, InTech, 2011. [14] L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, J. Appl. Phys. 86,(1999), 487. [15] E. New, T. Howells, P. Sullivan, T.S. Jones, Small molecule tandem organic photovoltaic cells incorporating an α-NPD optical spacer layer, Org. Electron. 14,(2013), 2353. [16] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics 6,(2012), 593. [17] B.V. Andersson, D.M. Huang, A.J. Moulé, O. Inganäs, An optical spacer is no panacea for light collection in organic solar cells, Appl. Phys. Lett. 94,(2009), 043302. [18] D.M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F.R. Aussenegg, A. Leitner, J.R. Krenn, S. Eder, S. Sax, E.J.W. List, Surface plasmon coupled electroluminescent emission, Appl. Phys. Lett. 92,(2008), 103304. [19] W.H. Koo, S.M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles, Nat. Photonics 4,(2010), 222. [20] H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, W. Rieß, Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling, Appl. Phys. Lett. 82,(2003), 466. [21] C.C. Katsidis, D.I. Siapkas, General Transfer-Matrix Method for Optical Multilayer Systems with Coherent, Partially Coherent, and Incoherent Interference, Appl. Opt. 41,(2002), 3978. [22] H.W. Lin, S.W. Chiu, L.Y. Lin, Z.Y. Hung, Y.H. Chen, F. Lin, K.T. Wong, Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures, Adv. Mater. 24,(2012), 2269. [23] H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, C.-W. Chen, L.-Y. Lin, F. Lin, K.-T. Wong, Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%, Org. Electron. 13,(2012), 1722. [24] Y. Kane, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE T. ANTENN. PROPAG. 14,(1966), 302. [25] A. Deinega, I. Valuev, B. Potapkin, Y. Lozovik, Minimizing light reflection from dielectric textured surfaces, J. Opt. Soc. Am. A 28,(2011), 770. [26] S. Kim, J.F. Zhu, H.J. Shen, M. Xue, K.L. Wang, Z.B. Yu, L. Li, J. Park, Q.B. Pei, G. Park, Plasmonic Organic Solar Cell and Its Absorption Enhancement Analysis Using Cylindrical Ag Nano-Particle Model based on Finite Difference Time Domain (FDTD), J. Opt. Soc. Am. A,(2011), CMCC1. [27] R.B. Wehrspohn, V. Marrocco, M. Grande, M.A. Vincenti, G. Calò, V. Petruzzelli, A. D'Orazio, A. Gombert, Efficient plasmonic nanostructures for thin film solar cells, Proc. SPIE 7725,(2010), 77250L. [28] C.-H. Poh, L. Rosa, S. Juodkazis, P. Dastoor, FDTD modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles, Opt. Mater. Express 1,(2011), 1326. [29] S.J. Tsai, M. Ballarotto, D.B. Romero, W.N. Herman, H.C. Kan, R.J. Phaneuf, Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell, Opt. Express 18 Suppl 4,(2010), A528. [30] K.Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells, Opt. Express 20,(2011), A39. [31] I.K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S.M. Zakeeruddin, M. Grätzel, M.L. Brongersma, Y. Cui, M.D. McGehee, Plasmonic Dye-Sensitized Solar Cells, Adv. Energy Mater. 1,(2011), 52. [32] Y. Jin, J. Feng, X.-L. Zhang, M. Xu, Y.-G. Bi, Q.-D. Chen, H.-Y. Wang, H.-B. Sun, Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode, Appl. Phys. Lett. 101,(2012), 163303. [33] J. You, X. Li, F.-x. Xie, W.E.I. Sha, J.H.W. Kwong, G. Li, W.C.H. Choy, Y. Yang, Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode, Adv. Energy Mater. 2,(2012), 1203. [34] M.A. Sefunc, A.K. Okyay, H.V. Demir, Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations, Opt. Express 19,(2011), 14200. [35] I. Powell, Principles of Optics, Taylor & Francis, 1976. [36] P.B. Clapham, M.C. Hutley, Reduction of Lens Reflexion by the “Moth Eye” Principle, Nature 244,(1973), 281. [37] K. Sahoo, M.K. Lin, E.Y. Chang, Y.Y. Lu, C.C. Chen, J.H. Huang, C.W. Chang, Fabrication of antireflective sub-wavelength structures on silicon nitride using nano cluster mask for solar cell application, NRL 4,(2009), 680. [38] Y.F. Huang, S. Chattopadhyay, Y.J. Jen, C.Y. Peng, T.A. Liu, Y.K. Hsu, C.L. Pan, H.C. Lo, C.H. Hsu, Y.H. Chang, C.S. Lee, K.H. Chen, L.C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol. 2,(2007), 770. [39] Y.M. Song, S.Y. Bae, J.S. Yu, Y.T. Lee, Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer, Opt. Lett. 34,(2009), 1702. [40] C. Cho, H. Kim, S. Jeong, S.-W. Baek, J.-W. Seo, D. Han, K. Kim, Y. Park, S. Yoo, J.-Y. Lee, Random and V-groove texturing for efficient light trapping in organic photovoltaic cells, Sol. Energy Mater. Sol. Cells 115,(2013), 36. [41] B.W. D’Andrade, S.R. Forrest, A.B. Chwang, Operational stability of electrophosphorescent devices containing p and n doped transport layers, Appl. Phys. Lett. 83,(2003), 3858. [42] M.H.N. Hiroaki, 2,3,6,7-Naphthalenetetracarboxylic Dianhydride (NTCDA) as a Monomer for Polyimide, JFE TECHNICAL REPORT 8,(2005), 8. [43] W.H. Southwell, Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces, J. Opt. Soc. Am. A 8,(1991), 549. [44] D.H. Raguin, G.M. Morris, Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles, Appl. Opt. 32,(1993), 2582. [45] B.L. Sopori, R.A. Pryor, Design of antireflection coatings for textured silicon solar cells, Solar Cells 8,(1983), 249. [46] P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces, J. Appl. Phys. 62,(1987), 243. [47] M. Tachiya, Breakdown of the Onsager theory of geminate ion recombination, J. Chem. Phys. 89,(1988), 6929. [48] C.L. Braun, Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production, J. Chem. Phys. 80,(1984), 4157. [49] T.M. Clarke, J.R. Durrant, Charge photogeneration in organic solar cells, Chem. Rev. 110,(2010), 6736. [50] C. Deibel, T. Strobel, V. Dyakonov, Role of the charge transfer state in organic donor-acceptor solar cells, Adv. Mater. 22,(2010), 4097. [51] S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells, Phys. Rev. B 82,(2010). [52] W.L. Leong, S.R. Cowan, A.J. Heeger, Differential Resistance Analysis of Charge Carrier Losses in Organic Bulk Heterojunction Solar Cells: Observing the Transition from Bimolecular to Trap-Assisted Recombination and Quantifying the Order of Recombination, Adv. Energy Mater. 1,(2011), 517. [53] R.A. Street, S. Cowan, A.J. Heeger, Experimental test for geminate recombination applied to organic solar cells, Phys. Rev. B 82,(2010). [54] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D.D. Bradley, J.R. Durrant, Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy, J. Am. Chem. Soc. 130,(2008), 3030. [55] C.G. Shuttle, B. O’Regan, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, J. de Mello, J.R. Durrant, Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell, Appl. Phys. Lett. 92,(2008), 093311. [56] G. Garcia-Belmonte, P.P. Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy, Sol. Energy Mater. Sol. Cells 94,(2010), 366. [57] L.J.A. Koster, V.D. Mihailetchi, H. Xie, P.W.M. Blom, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells, Appl. Phys. Lett. 87,(2005), 203502. [58] V. Mihailetchi, J. Wildeman, P. Blom, Space-Charge Limited Photocurrent, Phys. Rev. Lett. 94,(2005). [59] S. Cowan, A. Roy, A. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells, Phys. Rev. B 82,(2010), 245207. [60] M.S. Kim, B.G. Kim, J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS Appl Mater Interfaces 1,(2009), 1264. [61] V. Mihailetchi, J. Wildeman, P. Blom, Space-Charge Limited Photocurrent, Phys. Rev. Lett. 94,(2005), 126602. [62] Y. Zhang, X.D. Dang, C. Kim, T.Q. Nguyen, Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells, Adv. Energy Mater. 1,(2011), 610. [63] Y. Zhou, H. Cheun, S. Choi, W.J. Potscavage, C. Fuentes-Hernandez, B. Kippelen, Indium tin oxide-free and metal-free semitransparent organic solar cells, Appl. Phys. Lett. 97,(2010), 153304. [64] F.C. Krebs, K. Norrman, Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing, Prog. Photov. 15,(2007), 697. [65] G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Flexible light-emitting diodes made from soluble conducting polymers, Nature 357,(1992), 477. [66] Z. Yu, L. Hu, Z. Liu, M. Sun, M. Wang, G. Grüner, Q. Pei, Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode, Appl. Phys. Lett. 95,(2009), 203304. [67] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5,(2010), 574. [68] S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, ACS Nano 3,(2009), 1767. [69] M.G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes, Adv. Mater. 22,(2010), 4378. [70] L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano 4,(2010), 2955. [71] H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode, Nano Lett. 10,(2010), 4242. [72] J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Semitransparent organic photovoltaic cells with laminated top electrode, Nano Lett. 10,(2010), 1276. [73] J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8,(2008), 689. [74] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes, Adv. Mater. 23,(2011), 664. [75] X.Y. Zeng, Q.K. Zhang, R.M. Yu, C.Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer, Adv. Mater. 22,(2010), 4484. [76] W. Gaynor, G.F. Burkhard, M.D. McGehee, P. Peumans, Smooth nanowire/polymer composite transparent electrodes, Adv. Mater. 23,(2011), 2905.
|