帳號:guest(3.147.27.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳信宏
作者(外文):Chen, Shin-Hong
論文名稱(中文):具有極高靈敏度之單根氧化鋅奈米線一氧化氮氣體感測器
論文名稱(外文):Single ZnO Nanowire Sensors for Nitric Oxide Gas Sensing with Ultrahigh Sensitivities
指導教授(中文):林鶴南
指導教授(外文):Lin, Heh-Nan
口試委員(中文):李紫原
徐文光
林鶴南
口試委員(外文):Lee, Chi-Young
Hsu, Wen-Kuang
Lin, Heh-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031533
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:54
中文關鍵詞:氧化鋅奈米線一氧化氮氣體感測器
外文關鍵詞:ZnO nanowirenitric oxidegas sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:426
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本實驗以單根氧化鋅奈米線為基礎,利用黃光微影技術製作具有極高靈敏度的電阻式一氧化氮氣體感測器,其感測原理乃由於一氧化氮為氧化性氣體,吸附在氧化鋅表面時會造成奈米線導電性下降。將線徑約略300 nm的氧化鋅奈米線兩端連接100 nm、300 nm以及500 nm厚度的鈦電極,在室溫下進行濃度介於0.1 ppm至2 ppm的一氧化氮氣體感測。其中100 nm及300 nm較薄電極的元件,對2 ppm一氧化氮的靈敏度高達104以上,其電流電壓曲線在感測後由歐姆接觸轉變為蕭特基接觸;而500 nm較厚電極的元件,靈敏度則低了兩個數量級,並在感測前後維持歐姆接觸的特性。此結果說明奈米線與電極的接觸特性正是元件擁有高靈敏度的主要機制,且此一特性會受電極厚度所影響。

在不同氣體濃度的感測結果中,對同一元件而言,當濃度越高時由於氣體有較快的吸附速率,因此電流下降到初始值10 %所需的反應時間就越短。而當電極厚度100 nm、300 nm及500 nm的元件同樣感測0.1 ppm一氧化氮時,其反應時間則分別為331秒、183秒及26秒,顯示接觸電極越厚,反應越快的趨勢。此外,藉由歐姆接觸式元件在感測前後的電性變化,可根據吸附動力學得到氣體分子對奈米線的吸附及脫附速率常數,並推算出氧化鋅奈米線的表面缺陷密度及載子濃度。因此,我們藉由改變不同的厚度的電極,可根據需求製作極高靈敏度或反應快速的一氧化氮氣體感測器,並同時具有室溫操作性及可重複感測等優點。
In this work, nitric oxide (NO) gas sensors with ultrahigh sensitivities based on single ZnO nanowires (NWs) are reported. The sensing principle is because NO is an oxidizing gas and the adsorption of gas molecules on the NW surface causes the NW conductance to decrease. An individual sensor is composed of a single ZnO NW with a diameter of around 300 nm in contact with Ti electrodes of 100, 300 or 500 nm thick created by photolithography. The fabricated devices have been utilized to sense NO gas in a concentration range between 0.1 and 2 ppm at room temperature. For the sensors with electrodes of 100 and 300 nm thick, ultrahigh sensitivities over 104 are achieved for 2 ppm NO sensing. From the I−V curves, it is found the contact is Ohmic type prior to exposure to NO and turns to Schottky type afterwards. For the sensor with electrodes of 500 nm thick, the sensitivity is around 102 and much lower than the previous values. In addition, the contact remains Ohmic type after NO sensing. The results indicate that the contact characteristic change at NW-electrodes interface is the dominant mechanism for the ultrahigh sensitivity of gas sensing and it can be modified by the electrode thickness.

The results show the response time decreases as the NO concentration increases due to faster adsorption of NO gas under higher concentration. The response time is defined as time needed for the current to become 10 percent of the initial current. In addition, under the same concentration of 0.1 ppm, the response time of the sensors with 100, 300 and 500 nm thick electrodes are 331, 183 and 26 s, which means the response is faster as the electrode thickness increases. Besides, the adsorption and desorption rate constants of Ohmic type device can be calculated to derive the carrier concentration of ZnO NW. Therefore, we can fabricate a NO gas sensor with high sensitivity or fast response by changing the thickness of electrodes, and it has the advantages of room-temperature functionality and repeatability.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
Chapter 1 緒論 1
1.1 前言 2
1.2 研究動機 3
Chapter 2 文獻回顧 4
2.1 氧化鋅奈米線概論 5
2.1.1 晶體結構 5
2.1.2 成長機制與方法 6
2.1.3 氧空缺本質摻雜形成n-type半導體 8
2.2 氣體感測原理 10
2.2.1 氧空缺與氣體吸附作用 10
2.2.2 氧化鋅對一氧化氮的反應機制 13
2.3 感測元件光激發回復特性 14
2.4 以蕭特基接觸提高感測靈敏度 17
Chapter 3 實驗製程與量測 19
3.1 感測元件製作流程 20
3.1.1 氧化鋅奈米線成長 20
3.1.2 散佈奈米線於矽基板 21
3.1.3 定義電極圖樣 22
3.1.4 鈦電極蒸鍍 22
3.1.5 去除光阻 23
3.1.6 元件組裝 23
3.2 一氧化氮氣體感測 25
3.2.1 氣體感測系統架構 25
3.2.2 一氧化氮濃度計算 26
3.2.3 氣體感測操作流程 27
Chapter 4 實驗結果與討論 28
4.1 氧化鋅奈米線NO氣體感測器 29
4.2 電極接觸特性對NO感測結果的影響 31
4.3 不同NO濃度的感測結果 37
4.4 歐姆接觸式元件應用於吸附動力學分析 42
Chapter 5 結論 48
參考文獻 51
[1] C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, et al., In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 82 (2003) 1613-1615.
[2] L.B. Kreuzer, C.K.N. Patel, Nitric oxide air pollution: detection by optoacoustic spectroscopy, Science 173 (1971) 45-47.
[3] U. Frandsen, M. Lopez-Figueroa, Y. Hellsten, Localization of nitric oxide synthase in human skeletal muscle, Biochem Biophys Res Commun, 227(1996) 88-93.
[4] W. Maziak, S. Loukides, S. Culpitt, P. Sullivan, S.A. Kharitonov, P.J. Barnes, Exhaled nitric oxide in chronic obstructive pulmonary disease, Am J Respir Crit Care Med, 157(1998) 998-1002.
[5] S.A. Kharitonov, D. Yates, R.A. Robbins, R. Logansinclair, E.A. Shinebourne, P.J. Barnes, Increased nitric oxide in exhaled air of asthmatic patients, Lancet, 343 (1994) 133-135.
[6] P.M. Parthangal, R.E. Cavicchi, M.R. Zachariah, A universal approach to electrically connecting nanowire arrays using nanoparticles - application to a novel gas sensor architecture, Nanotechnology 17 (2006) 3786-3790.
[7] S.J. Chang, T.J. Hsueh, I.C. Chen, B.R. Huang, Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology 19 (2008) 175502.
[8] Q. Kuang, C.S. Lao, Z. Li, Y.Z. Liu, Z.X. Xie, L.S. Zheng, et al., Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization, J. Phys. Chem. C 112 (2008) 11539-11544.
[9] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor, J. Am. Chem. Soc. 131 (2009) 17690-17695.
[10] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condes. Matter 16 (2004) R829-R858.
[11] S.T. Ho, K.C. Chen, H.A. Chen, H.Y. Lin, C.Y. Cheng, H.N. Lin, Catalyst-free surface-roughness-assisted growth of large-scale vertically aligned zinc oxide nanowires by thermal evaporation, Chem. Mater. 19 (2007) 4083-4086.
[12] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO - nanostructures, defects, and devices, Materials Today 10 (2007) 40-48.
[13] J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, et al., Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 88 (2006) 233106.
[14] A. Umar, M.M. Rahman, M. Vaseem, Y.B. Hahn, Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles, Electrochem. Commun. 11 (2009) 118-121.
[15] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, et al., ZnO nanowire UV photodetectors with high internal gain, Nano Lett 7 (2007) 1003-1009.
[16] Y.B. Li, F. Della Valle, M. Simonnet, I. Yamada, J.J. Delaunay, High-performance UV detector made of ultra-long ZnO bridging nanowires, Nanotechnology 20 (2009) 045501.
[17] Y. Lang, H. Gao, W. Jiang, L.L. Xu, H.T. Hou, Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor, Sens. Actuator A 174 (2012) 43-46.
[18] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, et al., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett 84 (2004) 3654-3656.
[19] L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, et al., Size dependence of gas sensitivity of ZnO nanorods, J. Phys. Chem. C 111 (2007) 1900-1903.
[20] S.W. Choi, S.S. Kim, Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization, Sens. Actuator B 168 (2012) 8-13.
[21] N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors, J. Electroceram 7 (2001) 143-167.
[22] D. Manno, G. Micocci, A. Serra, M. Di Giulio, A. Tepore, Structural and electrical properties of In2O3-SeO2 mixed oxide thin films for gas sensing applications, J. Appl. Phys. 88 (2000) 6571-6577.
[23] N.L. Hung, E. Ahn, H. Jung, H. Kim, S.K. Hong, D. Kim, NO gas sensing properties of ZnO wire-like thin films synthesized by thermal oxidation of sputtered Zn metallic films in air, in: 3rd International Nanoelectronics Conference, 2010 pp. 448-449.
[24] C.C. Liu, J.H. Li, C.C. Chang, Y.C. Chao, H.F. Meng, S.F. Horng, et al., Selective real-time nitric oxide detection by functionalized zinc oxide, J. Phys. D: Appl. Phys. 42 (2009) 155105.
[25] V.P. Verma, S. Das, S. Hwang, H. Choi, M. Jeon, W. Choi, Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire, Mater. Sci. Eng. B 171 (2010) 45-49.
[26] J. Kim, J.H. Yun, C.H. Kim, Y.C. Park, J.Y. Woo, J. Park, et al., ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect, Nanotechnology 21 (2010) 115205.
[27] C.Y. Lin, J.G. Chen, W.Y. Feng, C.W. Lin, J.W. Huang, J.J. Tunney, et al., Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor, Sens. Actuator B 157 (2011) 361-367.
[28] N. Singh, C.Y. Yan, P.S. Lee, E. Comini, Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation, Nanoscale 3 (2011) 1760-1765.
[29] J. Zhang, S.R. Wang, Y.M. Wang, Y. Wang, B.L. Zhu, H.J. Xia, et al., NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuator B 135 (2009) 610-617.
[30] D. Meng, T. Yamazaki, Y.B. Shen, Z.F. Liu, T. Kikuta, Preparation of WO3 nanoparticles and application to NO2 sensor, Appl. Surf. Sci. 256 (2009) 1050-1053.
[31] G.Y. Lu, J. Xu, J.B. Sun, Y.S. Yu, Y.Q. Zhang, F.M. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles, Sens. Actuator B 162 (2012) 82-88.
[32] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151-180.
[33] W.K. Hong, B.J. Kim, T.W. Kim, G. Jo, S. Song, S.S. Kwon, et al., Electrical properties of ZnO nanowire field effect transistors by surface passivation, Colloids Surf. A 313 (2008) 378-382.
[34] S.P. Chiu, Y.H. Lin, J.J. Lin, Electrical conduction mechanisms in natively doped ZnO nanowires, Nanotechnology 20 (2009) 015203.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *