|
[1] C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, et al., In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 82 (2003) 1613-1615. [2] L.B. Kreuzer, C.K.N. Patel, Nitric oxide air pollution: detection by optoacoustic spectroscopy, Science 173 (1971) 45-47. [3] U. Frandsen, M. Lopez-Figueroa, Y. Hellsten, Localization of nitric oxide synthase in human skeletal muscle, Biochem Biophys Res Commun, 227(1996) 88-93. [4] W. Maziak, S. Loukides, S. Culpitt, P. Sullivan, S.A. Kharitonov, P.J. Barnes, Exhaled nitric oxide in chronic obstructive pulmonary disease, Am J Respir Crit Care Med, 157(1998) 998-1002. [5] S.A. Kharitonov, D. Yates, R.A. Robbins, R. Logansinclair, E.A. Shinebourne, P.J. Barnes, Increased nitric oxide in exhaled air of asthmatic patients, Lancet, 343 (1994) 133-135. [6] P.M. Parthangal, R.E. Cavicchi, M.R. Zachariah, A universal approach to electrically connecting nanowire arrays using nanoparticles - application to a novel gas sensor architecture, Nanotechnology 17 (2006) 3786-3790. [7] S.J. Chang, T.J. Hsueh, I.C. Chen, B.R. Huang, Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology 19 (2008) 175502. [8] Q. Kuang, C.S. Lao, Z. Li, Y.Z. Liu, Z.X. Xie, L.S. Zheng, et al., Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization, J. Phys. Chem. C 112 (2008) 11539-11544. [9] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor, J. Am. Chem. Soc. 131 (2009) 17690-17695. [10] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condes. Matter 16 (2004) R829-R858. [11] S.T. Ho, K.C. Chen, H.A. Chen, H.Y. Lin, C.Y. Cheng, H.N. Lin, Catalyst-free surface-roughness-assisted growth of large-scale vertically aligned zinc oxide nanowires by thermal evaporation, Chem. Mater. 19 (2007) 4083-4086. [12] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO - nanostructures, defects, and devices, Materials Today 10 (2007) 40-48. [13] J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, et al., Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 88 (2006) 233106. [14] A. Umar, M.M. Rahman, M. Vaseem, Y.B. Hahn, Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles, Electrochem. Commun. 11 (2009) 118-121. [15] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, et al., ZnO nanowire UV photodetectors with high internal gain, Nano Lett 7 (2007) 1003-1009. [16] Y.B. Li, F. Della Valle, M. Simonnet, I. Yamada, J.J. Delaunay, High-performance UV detector made of ultra-long ZnO bridging nanowires, Nanotechnology 20 (2009) 045501. [17] Y. Lang, H. Gao, W. Jiang, L.L. Xu, H.T. Hou, Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor, Sens. Actuator A 174 (2012) 43-46. [18] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, et al., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett 84 (2004) 3654-3656. [19] L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, et al., Size dependence of gas sensitivity of ZnO nanorods, J. Phys. Chem. C 111 (2007) 1900-1903. [20] S.W. Choi, S.S. Kim, Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization, Sens. Actuator B 168 (2012) 8-13. [21] N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors, J. Electroceram 7 (2001) 143-167. [22] D. Manno, G. Micocci, A. Serra, M. Di Giulio, A. Tepore, Structural and electrical properties of In2O3-SeO2 mixed oxide thin films for gas sensing applications, J. Appl. Phys. 88 (2000) 6571-6577. [23] N.L. Hung, E. Ahn, H. Jung, H. Kim, S.K. Hong, D. Kim, NO gas sensing properties of ZnO wire-like thin films synthesized by thermal oxidation of sputtered Zn metallic films in air, in: 3rd International Nanoelectronics Conference, 2010 pp. 448-449. [24] C.C. Liu, J.H. Li, C.C. Chang, Y.C. Chao, H.F. Meng, S.F. Horng, et al., Selective real-time nitric oxide detection by functionalized zinc oxide, J. Phys. D: Appl. Phys. 42 (2009) 155105. [25] V.P. Verma, S. Das, S. Hwang, H. Choi, M. Jeon, W. Choi, Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire, Mater. Sci. Eng. B 171 (2010) 45-49. [26] J. Kim, J.H. Yun, C.H. Kim, Y.C. Park, J.Y. Woo, J. Park, et al., ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect, Nanotechnology 21 (2010) 115205. [27] C.Y. Lin, J.G. Chen, W.Y. Feng, C.W. Lin, J.W. Huang, J.J. Tunney, et al., Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor, Sens. Actuator B 157 (2011) 361-367. [28] N. Singh, C.Y. Yan, P.S. Lee, E. Comini, Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation, Nanoscale 3 (2011) 1760-1765. [29] J. Zhang, S.R. Wang, Y.M. Wang, Y. Wang, B.L. Zhu, H.J. Xia, et al., NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuator B 135 (2009) 610-617. [30] D. Meng, T. Yamazaki, Y.B. Shen, Z.F. Liu, T. Kikuta, Preparation of WO3 nanoparticles and application to NO2 sensor, Appl. Surf. Sci. 256 (2009) 1050-1053. [31] G.Y. Lu, J. Xu, J.B. Sun, Y.S. Yu, Y.Q. Zhang, F.M. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles, Sens. Actuator B 162 (2012) 82-88. [32] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151-180. [33] W.K. Hong, B.J. Kim, T.W. Kim, G. Jo, S. Song, S.S. Kwon, et al., Electrical properties of ZnO nanowire field effect transistors by surface passivation, Colloids Surf. A 313 (2008) 378-382. [34] S.P. Chiu, Y.H. Lin, J.J. Lin, Electrical conduction mechanisms in natively doped ZnO nanowires, Nanotechnology 20 (2009) 015203. |