帳號:guest(3.141.41.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):童凱雋
論文名稱(中文):二氧化鈦奈米纖維之製備與其在可撓式染料敏化太陽能電池之應用
論文名稱(外文):Synthesis of surface-treated TiO2 nano-fiber and its application on flexible dye-sensitive solar cell
指導教授(中文):戴念華
口試委員(中文):李紫原
葉孟考
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031519
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:二氧化鈦纖維染料敏化太陽能電池
相關次數:
  • 推薦推薦:0
  • 點閱點閱:86
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
以可撓性材料為基板的染料敏化太陽能電池由於其低成本、應用性廣及具良好的光電轉換效率而受到矚目,但可撓式基板無法應用於高溫製程,而未經過高溫燒結的TiO2電極會因其TiO2顆粒之間連結不佳而導致電子傳輸困難,再加上顆粒狀的結構在承受外加彎曲應力時容易破碎,使得電池整體表現不佳。本實驗以P25 TiO2粉末和氫氧化鈉進行水熱法,製備具有較佳的電子傳輸特性以及可撓韌性的TiO2奈米纖維(TiO2 nano-fiber, TNF)來改善以上問題,並對TiO2纖維進行表面處理,以提升電極染料吸附量,增加電池的光電轉換效率。
本實驗在水熱法製程後,以攪拌酸洗製程取代傳統酸洗製程,較能去除水熱法製程殘留的鈉離子,避免鈉離子對後續燒結製程產生不良影響。合成的TNF直徑約50-200 nm,長度約10-13 μm,以此未經表面處理的TNF作為工作電極組成染料敏化太陽能電池,TNF電極的染料吸附量為24.43 μmol/g,電池的轉換效率為1.08 %;將TNF以濃度為1 M的硝酸處理8小時後,可以提升電極染料吸附量至36.71 μmol/g,轉換效率可增加到1.63 %;結合不同表面處理後,可以進一步將效率提升到1.65 %。在彎曲測試中,當彎曲曲率半徑達到1.02 cm,電池效率仍可維持未彎曲時的98%以上,說明本實驗所製備之TNF電池在彎曲情況下也能正常發揮功能。
摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介與發展 2
1.3 研究動機 4
第二章 文獻回顧與工作原理 6
2.1 染料敏化太陽能電池簡介與基本原理 6
2.2 染料敏化太陽能電池各層探討 7
2.2.1 工作電極 7
2.2.2 表面修飾染料 8
2.2.3 電解液 10
2.2.4 對電極 12
2.3 TiO2結構對染料敏化太陽能電池效率之影響 13
2.4 太陽能電流電壓輸出特性 16
2.5 交流阻抗原理與等效電路 18
2.5.1 交流阻抗原理 18
2.5.2 染料敏化太陽能電池之等效電路 21
第三章 實驗材料與方法 28
3.1 實驗藥品與實驗儀器 28
3.1.1 實驗藥品 28
3.1.2 實驗儀器 29
3.2 實驗步驟 30
3.2.1 二氧化鈦奈米纖維製備 30
3.2.2 基板清潔 30
3.2.3 二氧化鈦漿料配製 30
3.2.4 工作電極之製備 31
3.2.5 染料浸泡 31
3.2.6 對電極 31
3.2.7 電池組裝 32
3.3 分析儀器 32
3.3.1 全電池光電轉換效率量測 32
3.3.2 全電池光源電化學阻抗光譜分析 33
3.3.3 染料吸附量量測 33
第四章 結果與討論 37
4.1 二氧化鈦奈米纖維自支撐薄膜 37
4.1.1 酸洗製程對薄膜的影響 38
4.1.2 燒結參數對二氧化鈦膜的影響。 38
4.2 抽濾成膜法製備TNF工作電極特性研究 40
4.2.1 抽濾成膜法工作電極 40
4.3 酸處理製程對TNF電極影響之研究 41
4.3.1 不同種類酸處理對TNF電極之影響 41
4.3.2 酸處理時間對TNF電極之影響 43
4.3.3 酸處理濃度對TNF電極之影響 44
4.4 其它表面處理對TNF電極影響之研究 46
4.5 TNF與TNP的複合結構 47
4.6 彎曲測試 48
第五章 結論 70
5.1 實驗結論 70
5.2 展望 71
參考文獻 73
[1] J. L. Sawin, S. C. Bhattacharya, E. M. Galàn, A. McCrone, W. R. Moomaw, R. Sims, V. S. O’Brien, F. Sverrisson, “Renewables 2012 global status report”, REN 21, pp. 21-22 (2012).
[2] E. Ahlonsou, Y. Ding, D. Schimel, A. P. M. Baede, “Climate change 2001: the scientific basis”, IPCC 4th Assessment Report, pp. 89-90 (2007).
[3] P. Gevorkian, “Sustainable energy systems engineering: the complete green building design resource”, McGraw-Hill Professional, New York, pp. 498-499 (2007).
[4] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new p-n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, Vol. 25, pp. 676-677 (1954).
[5] KRI Report No. 8: Solar cells, (2005).
[6] B. O’regan, M. Grätzel, “A low-cost, high-efficiency solar based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, pp. 737-739 (1991).
[7] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science, Vol. 4, pp. 314-321 (1999).
[8] S. Ito , T. N. Murakami , P. Comte , P. Liska , C. Grätzel , M. K. Nazeeruddin , M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, Vol. 516, pp. 4613-4619 (2008).
[9] M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, Vol. 44, pp. 6842 -6851 (2005).
[10] M. K. Nazeeruddin, S. M. Zakeeruddin, J. J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Grätzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coordination Chemistry Reviews, Vol. 248, pp. 1317-1328 (2004).
[11] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C. A. Bignozzi, “Efficient osmium sensitizers containing 2,2’-bipyridine-4,4’-
bisphosphonic acid ligand”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 166, pp. 99-106 (2004).
[12] M. Ryan, “Progress in ruthenium complexes for dye sensitized solar cells”, Platinum Metals Review, Vol. 53, pp. 216-218 (2009).
[13] G. J. Meyer, “Efficient light-to electrical conversion: nanocrystalline TiO2 film modified with inorganic sensitizers”, Journal of Chemical Education, Vol. 74, pp. 652-656 (1997).
[14] J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. G. Sato, “A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells”, Advanced Functional Materials, Vol. 17, pp. 2645-2652 (2007).
[15] L. Yang, Z. Zhang, S. Fang, X. Gao, M. Obata, “Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector”, Solar Energy, Vol. 81, pp. 717-722 (2007).
[16] H. Pettersson, T. Gruszecki, “Long term stability of low-power dye-sensitized solar cells prepared by industrial methods”, Solar Energy Materials & Solar cells, Vol. 70, pp. 203-212 (2001).
[17] G. Boschloo, L. Ha1ggman, A. Hagfeldt, “Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells”, The Journal of Physical Chemistry B, Vol. 110. pp. 13144-13150 (2006).
[18] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, “Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability”, The Journal of Physical Chemistry C, Vol. 113, pp. 21779-21783 (2009).
[19] L. Meng, T. Ren, C. Li, “The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC”, Applied Surface Science, Vol. 256, pp. 3672-3682 (2010).
[20] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited platinum counter electrode”, Electrochimica Acta, Vol. 53, pp. 2890-2896 (2008).
[21] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, Vol. 9, pp. 596-598 (2007).
[22] S. I. Cha, B. K. Koo, S. H. Seo, D. Y. Lee, “Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls”, Journal of Materials Chemistry, Vol. 20, pp. 659-662 (2010).
[23] H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon, “Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition”, Journal of Materials Chemistry, Vol. 21, pp. 7548-7551 (2011).
[24] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, “Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, Vol. 10, pp. 1555-1558 (2008).
[25] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, “Morphology control of mesoporous TiO2 for performance of dye-sensitized solar cells”, Solar Energy Material & Sol Cells, Vol. 83, pp. 1–13 (2004).
[26] J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, “TiO2 nanorods as
additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 180, pp. 184–188 (2006).
[27] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim, W. I. Lee “Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres”, Advance Materials, Vol. 21, pp. 3668–3673 (2009).
[28] H. G. Jung, Y. S. Kang, Y. K. Sun, “Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells”, Electrochimica Acta, Vol. 55, pp. 4637-4641 (2010).
[29] S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency”, Advanced Materials, Vol. 20, pp. 54–58 (2008).
[30] X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires”, Angewandte Chemie, Vol. 124, pp. 2781-2784 (2012).
[31] I. C. Flores , J. N. Freitas, C. Longo, M. A. Paoli, H. Winnischofer , A. F. Nogueira, “Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 187, pp. 153-160 (2007).
[32] J. Y. Liao, B. X. Lei, H. Y. Chen, D. B. Kuang, C. Y. Su, “Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells”, Energy & Environmental Science, Vol. 5, pp. 5750-5757 (2012).
[33] Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, Jing Xu, H. Han, D. Chen, G. Shen, “Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts”, ACS Nano, Vol. 5, pp. 8412-8419 (2011).
[34] X. Zhang, T. Zhang, J. Ng, D. D. Sun, “High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment”, Advanced Functional Materials, Vol. 19, pp. 3731–3736 (2009).
[35] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, ” Hydrothermal synthesis and photoluminescence of TiO2 nanowires”, Chemical Physics Letters, Vol. 365, pp. 300-304 (2002).
[36] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania nanotubes prepared by chemical processing”, Advanced Materials, Vol. 11, pp. 1307-1311 (1999).
[37] P. K. Singh, K. W. Kim, N. G. Park, H. W. Rhee, “Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application”, Synthetic Metals, Vol. 158, pp. 509-593 (2008).
[38] P. Sawunyama, A. Yasumori, K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, Vol. 33, pp. 795-801 (1998).
[39] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotube”, Langmuir, Vol. 14, pp. 3160-3163 (1998).
[40] L. Meng, A. Ma, P. Ying, Z. Feng, C. Li, “Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells”, Journal of Nanoscience and Nanotechnology, Vol.11, pp. 929–934 (2011).
[41] H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, K. C. Ho, “Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods”, Journal of Power Sources, Vol. 195, pp. 6225-6231 (2010).
[42] P. J. Cameron, L. M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, The Journal of Physical Chemistry B, Vol. 107, pp. 14394-14400 (2003).
[43] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, “Nano-embossed hollow spherical as bifunctional material for high-efficiency dye-sensitized solar cells”, Advanced Materials, Vol. 20, pp. 195-199 (2008).
[44] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, J. A. M. Roosmalen, “Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells”, The Journal of Physical Chemistry B, Vol. 110, pp. 19191-19197 (2006).
[45] L. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Applied Physics Letters, Vol. 84, pp. 2433-2435 (2004).
[46] V. Yong, S. T. Ho, R. P. H. Chang, “Modeling and simulation for dye-sensitized solar cells”, Applied Physics Letters, Vol. 92, pp. 143506 (2008).
[47] X. Zhang, J. H. Pan, A. J. Du, W. Fu, D. D. Sun, J. O. Leckie, “Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment”, Water Research, Vol. 43, pp. 1179–1186 (2009).
[48] A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, “TiO2-B nanowires”, Angewandte Chemie International Edition, Vol. 43, pp. 2286-2288 (2004).
[49] 劉曉萍, “簡易合成氮氧化鈦的自支撐薄膜應用於超級電容器上”, 國立清華大學材料科學與工程學系 (2012).
[50] Z. S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, “Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films”, Langmuir, Vol. 21, pp. 4272-4276 (2005)
[51] K. H. Park, E. M. Kim, H. B. Gu, “Electrochemical properties of HNO3 pre-treated TiO2 photoanode based dye-sensitized solar cell”, Journal of Advanced Engineering and Technology, Vol. 1, pp. 405-408 (2008).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *