帳號:guest(3.135.204.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉奇京
論文名稱(中文):共軛高分子奈米薄膜在溶劑蒸氣內之機械穩定度與光電行為變化
論文名稱(外文):The instability of conjugated polymer ultrathin films in solvent vapor and the induced changes in optoelectronic properties
指導教授(中文):楊長謀
口試委員(中文):楊長謀
林滄浪
張豐志
劉怡維
戴子安
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031518
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:93
中文關鍵詞:共軛高分子溶劑退火除潤螢光效率暫態交纏點高分子組態
相關次數:
  • 推薦推薦:0
  • 點閱點閱:106
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本論文探討共軛高分子MEH-PPV /PS混合薄膜於室溫經溶劑退火後薄膜之機械穩定度與螢光性質之改變。MEH-PPV濃度(c)為5%時薄膜將進行除潤過程,此時因分子剪切流變造成高分子間、高分子與基材間劇烈拉扯,抑制電子聲子交互作用而在殘留薄膜產生10倍螢光增益。除潤時螢光光譜先出現藍位移再紅位移,表示除潤過程中高分子的共軛結構不斷改變。使用貧溶劑除潤後初期暫態藍位移量明顯下降,此外用高分子量PS進行除潤藍位移量上昇,以上觀察皆表示於除潤溶劑與高分子間在分子尺度因溶解度、分子交纏之差異改變除潤後MEH-PPV之共軛結構。經溶劑退火後,溶劑分子擴散進入薄膜中並累積在基材之上,造成薄膜底層密度異常鬆散,之後薄膜之機械不穩定行為依靠此鬆散層運動。
c為1%時進行溶劑除潤,分子流變能有效作用在各個MEH-PPV分子,產生螢光光譜約30 nm的藍位移。然而當c為25%之共軛高分子薄膜經溶劑退火後,因MEH-PPV分子間形成有效的交聯網絡阻止除潤進行,表面只會出現些微起伏來降低系統自由能。此時因為MEH-PPV分子間作用提昇使得螢光光譜紅位移及螢光效率降低。溶劑退火後的共軛高分子薄膜經長時間時效觀察,發現薄膜出現約50 nm起伏之皺折結構,同時伴隨光譜藍位移。
Solvent annealing induces the instability of conjugated polymer ultrathin films and the changes in optoelectronic properties at room temperature was investigated in this report. At first, we dispersed MEH-PPV molecules in inert polystyrene (PS) in the concentration (c) of 5%. Solvent annealing-driven dewetting created massive PL enhancement when polymers flowed into dewetting droplets and residual layer. This molecular shear flow suppressed electron-phonon interaction in polymer chains and the PL enhancement is up to ~ 10 folds at the residual layer. The blue shift accompanying with dewetting was recorded. As annealing continued on, the blue shift reversed, illustrating the increase of conjugation length during solvent annealing. The transient blue shift became smaller by poor solvent dewetting and larger as we used entangling long chains PS matrix. These results indicated solvent-polymer interactions and alteration of inter-segmental chain entanglements influences up to the stage of dewetting. Before dewetting, solvent molecules penetrated into the polymer film and saturated the underlayer. All the film instability process too place on the loosen underlayer.
As c decreases, molecular shear stress could effectively transferred to individual MEH-PPV molecule and created huge blue shift (~ 30 nm). However, high MEH-PPV concentration film (c = 25%) wouldn’t dewetting during solvent annealing due to sufficient percolation of MEH-PPV. As a result, only few bumps emergence on the surface in order to decrease system free energy. The PL spectrum red shift and the intensity drop after solvent annealing. Interestingly, solvent-annealed polymer films transformed to wrinkle structure after aging in the room temperature and accompanying with blue shift.
摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XVI
第一章 簡介 1
第二章 文獻回顧 3
2-1 共軛高分子光電特性 3
2-1-1 MEH-PPV分子組態及其特性 3
2-1-2 溶劑退火時MEH-PPV的分子組態 6
2-1-3 Exciton、Excimer、Exciplexes和Polaron pair 8
2-1-4 MEH-PPV/PS摻雜效應 9
2-1-5 共軛高分子的拉伸 9
2-1-6 共軛高分子的熱退火除潤 10
2-2 高分子薄膜除潤現象 13
2-2-1 高分子薄膜的殘留應力 13
2-2-2 高分子薄膜的除潤機制 17
2-2-3 高分子薄膜的熱退火除潤 20
2-3 高分子薄膜溶劑除潤現象 22
2-3-1 高分子薄膜吸收溶劑 Case II diffusion 22
2-3-2 高分子薄膜的溶劑退火除潤 24
第三章 實驗方法 26
3-1 實驗材料 26
3-2 實驗方法 27
3-2-1 MEH-PPV/PS薄膜 27
3-2-2 溶劑除潤退火實驗 28
3-3 實驗儀器 29
3-3-1 光學顯微鏡 (Optical microscopy) 29
3-3-2 原子力探針顯微鏡 (Atomic force microscopy) 30
3-3-3 螢光光譜儀 (Photoluminescence spectrometer) 33
3-3-4 原子力顯微鏡整合共焦螢光光譜儀 34
3-3-5 低掠角X-ray反射率(X-Ray reflectivity) 36
第四章 結果與討論 42
4-1 共軛高分子薄膜溶潤退火除潤實驗 42
4-1-1 MEH-PPV/PS薄膜溶潤除潤 42
4-1-2 MEH-PPV/PS溶劑退火除潤薄膜結構 45
4-1-3 溶劑退火除潤薄膜的共焦螢光光譜分析 48
4-1-4 貧溶劑引致MEH-PPV/PS薄膜溶劑退火除潤 56
4-1-5 MEH-PPV/PS薄膜溶劑退火前後薄膜結構改變 62
4-1-6 驅使除潤溶劑性質對MEH-PPV/PS薄膜螢光性質影響 64
4-1-7 PS的分子量效應 66
4-2 溶劑退火除潤時基材效應 71
4-3 共軛高分子濃度效應 75
4-3-1 1% MEH-PPV薄膜溶劑退火實驗 75
4-3-2 25% MEH-PPV薄膜溶劑退火實驗 78
4-3-3 照光對MEH-PPV分子鏈運動的影響 83
第五章 結論 86
第六章 參考文獻 89
1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P.. L.; Holmes, A. B., Nature 1990, 347, 539-541.
2. Granström, M., Petritsch, K., Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Nature 1998, 395, 257-260.
3. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J., Nature 1992, 357, 477-479.
4. He, G.; Li, Y.; Liu, J.; Yang, Y., Applied Physics Letters 2002, 80, 4247.
5. Nguyen, T. Q.; Doan, V.; Schwartz, B. J., Journal of Chemical Physics 1999, 110, 4068.
6. Fox, M., Optical properties of solids. Oxford University Press Oxford; New York, 2001
7. Greenham, N. C.; Samuel, I. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y. A. R. R.; Moratti, S. C.; Holmes, A. B.; Friend. R. H., Chemical Physics Letters 1995, 241, 89-96.
8. Jakubiak, R.; Christopher, J. C.; Wan, W. C.; Rothberg, L. J., Journal of Physical Chemistry A 1999, 103, 2394-2398.
9. Yan, M.; Rothberg, L. J.; Papadimitrakopoulos, F.; Galvin, M. E.; Miller, T. M., Physical Review Letters 1994, 73, 744-747.
10. Yan, M.; Rothberg, L. J.; Papadimitrakopoulos, F.; Galvin, M. E.; Miller, T. M., Physical Review Letters 1994, 72, 1104-1107.
11. Collini, E.; Scholes, G. D., Science 2009, 323, 369-373.
12. Nguyen, T. Q.; Wu, J.; Doan, V.; Schwartz, B. J.; Tolbert, S. H., Science 2000, 288, 652-656.
13. Tung, K. P.; Chen, C. C.; Lee, P. W.; Liu, Y. W.; Hong, T. M.; Hwang, K. C.; Hsu, J. H.; White, J. D.; Yang, A. C.-M., ACS Nano 2011, 5, 7296-7302.
14. Reiter, G.; Hamieh, M,; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmin, T.; Raphaël, A. E., Nature Materials 2005, 4, 754-758.
15. Yang, M. H.; Hou, S. Y.; Chang, Y. L.; Yang, A. C.-M., Physical Review Letters 2006, 96, 066105.
16. Reiter, G., Physical Review Letters 1992, 68, 75-78.
17. Reiter, G., Langmuir 1993, 9, 1344-1351.
18. Lee, S. H.; Yoo, P. J.; Kwon, S. J.; Lee, H. H., Journal of Chemical Physics 2004, 121, 4346.
19. Xiu, L.; Shi, T.; An. L., Journal of Chemical Physics 2008, 129, 044904.
20. Vogelsang, J.; Adachi, T.; Brazard, J.; Vanden Bout, D. A. Barbara, P. F., Nature Materials 2011, 10, 942-946.
21. Vogelsang, J.; Brazard, J.; Adachi, T.; Bolinger, J. C.; Barbara, P. F., Angewandte Chemie International Editon 2011, 50, 2257-2261.
22. Barbara, P. F.; Gesquiere, A. J.; Park, S. J.; Lee, Y. J., Accounts of Chemical Research 2005, 38, 602-610.
23. Yu, J.; Hu, D.; Barbara, P. F., Science 2000, 289, 1327-1330.
24. Brédas, J. L.; Silbey, R., Science 2009, 323, 348-349.
25. Schwartz, B. J., Annual Review of Physical Chemistry 2003, 54, 141-172.
26. Nguyen, T. Q.; Martini, I. B.; Liu, J.; Schwartz, B. J., Journal of Physical Chemistry B 2000, 104, 237-255.
27. Schwartz, B. J., Nature Materials 2008, 7, 427-428.
28. Jenekhe, S. A.; Osaheni, J. A., Science 1994, 265, 765-768.
29. Jenekhe, S. A.; Osaheni, J. A., Chemistry of Materials 1994, 6, 1906-1909.
30. Shinar, J.; Partee, J., Synthetic Metals 1997, 84, 525-528.
31. 楊志偉, 清華大學材料系碩士論文 2006, 利用除潤與薄膜拉伸測試研究分子鏈運動對共軛高分子發光之影響.
32. 陳炳志, 清華大學材料系碩士論文 2010, 表面除潤摩擦形變引起之共軛高分子巨大之光電增益.
33. 李培煒, 清華大學材料系碩士論文 2011, 共軛高分子薄膜之分子堆積、除潤運動與拉伸的發光增益研究.
34. Reiter, G.; de Gennes, P. G., The European Physical Journal E 2001, 6, 25-28.
35. Reiter, G., Macromolecules 1994, 27, 3046-3052.
36. Reiter, G., Advances in Polymer Science 2013, 252, 29-64.
37. 張昱崙, 清華大學材料系碩士論文 2008, 拘束於旋塗奈米超薄膜內高分子團之分子力、堆積、和形變之量測與分析研究.
38. Seemann, R.; Herminghaus, S.; Jacobs, K., Physical Review Letters 2001, 86, 5534-5537.
39. Sharma, A., Langmuir 1993, 9, 861-869.
40. Sharma, A., Langmuir 1993, 9, 3580-3586.
41. Sharma, A.; Khanna, R., Physical Review Letters 1998, 81, 3463-3466.
42. Sharma, A.; Khanna, R., Journal of Chemical Physics 1999, 110, 4929.
43. Seemann. R.; Hermnghaus, S.; Jacobs, K., Journal of Physics: Condensed Matter 2001, 13, 4925.
44. Rayleigh, L., Proceeding of the London Mathematical Society 1878, 10, 4-13.
45. Stange, T. G.; Evans, D. F.; Hendrickson, W. A., Langmuir 1997, 13, 4459-4465.
46. Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A., Physical Review Letters 1998, 81, 1251-1254.
47. Alfrey Jr., T.; Gurnee, E. F.; Lloyd, W. G., Journal of Polymer Science Part C: Polymer Symposia 1966, 12, 249-261.
48. Brandrup, J.; Immergut, E. H., Polymer handbook. John Wiley& Sons, Inc. 3rd, 1989.
49. Yu, P.; Ma, X. L.; Liu, C. C.; Tang, G.; Yang, A. C.-M., in preparation
50. Yang, X.; Loos, J., Macromolecules 2007, 40, 1353-1362.
51. Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.; Hummeten, J. C., Journal of Physical Chemistry A 2005, 109, 5266-5274.
52. Halls, J. J.; Pichler, K.; Friend, R. H.; Moratti, S C.; Holmes, A. B., Applied Physics Letters 1996, 68, 3120.
53. Markov, D. E.; Tanase, C.; Blom, P. W. M.; Wildeman, J., Physical Review B 2005, 72, 045217.
54. Van Krevelen, D. W., Properties of Polymers. Elsevier, 1990
55. Cossiello, R. F.; Susman, M. D.; Aramendia, P. F.; Atvars, T. D. Z., Journal of Luminescence 2010, 130, 415-423.
56. Kramer, E. J., Crazing in Polymers. Springer-Verlag, New York, 1983
57. Masson, J. L.; Green, P. F., Physical Review E 2002, 65, 031806.
58. Castro, F. A.; Benmansour, H.; Graeff, C. F. O.; Nüesch, F.; Tutis, E.; Hany, R., Chemistry of Materials 2006, 18, 5504-5509.
59. Botiz, I.; Freyberg, P.; Stingelin, N.; Yang, A. C.-M.; Reiter, G., Macromolecules 2013, 46, 2352-2356.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *