帳號:guest(3.145.42.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪英展
作者(外文):Hung, Ying Chan
論文名稱(中文):懸空薄膜上水膜層之研究與自組裝二氧化錫於電阻式記憶體之應用
論文名稱(外文):Investigation on Water Layers on Free-standing Films and Self-assembled Tin Dioxide for Resistive Random-access Memory Application
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri Rung
口試委員(中文):甘炯耀
楊重熙
盧明昌
王秋燕
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031509
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:109
中文關鍵詞:懸空薄膜上水膜層電阻式記憶體
外文關鍵詞:water layers on free-standing surfacesresistive-switching devices
相關次數:
  • 推薦推薦:0
  • 點閱點閱:626
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究分為兩個部分。第一部分為懸空薄膜上水膜層之研究和探討其
形成機制,本研究使用專為穿透式電子顯微鏡觀測液態樣品而設計的微流
道樣品槽,將水溶液載入微流道並形成水膜,再透過此樣品槽的氮化矽薄
膜觀測窗,利用電子能量損失能譜儀與定量奈米顆粒分析兩種方法來分析
水膜的厚度與結構。實驗結果發現有一 100~170 奈米厚的水膜形成,且此水膜的厚度並不受到微流道的高度、奈米顆粒的濃度、以及奈米顆粒大小所影響。本研究進一步分析發現,此 100~170 奈米厚水膜只會在無基材支撐的懸空氮化矽薄膜觀測窗上形成,並且水膜層厚度受到觀測窗薄膜厚度影響,因此本研究提出假說將懸空觀測窗與水膜層視為一個系統,其總厚度為 470 nm,並且這個系統的特性表現出 Casimir-Lifshitz effect。本研究的結果將能應用於微流道的設計、定量分析溶液中奈米顆粒的濃度、與觀測顆粒團聚狀態。
本研究第二部分為探討自組裝二氧化錫於電阻式記憶體之應用,本實
驗透過多層膜堆疊,即銀/錫摻雜氧化銦/二氧化錫/硫化亞錫/鉬
(Ag/ITO/SnO2-x/SnS/Mo),達成可變電阻的功能。分析發現,可變電阻的效應由錫摻雜氧化銦與二氧化錫的介面貢獻,而 n 型二氧化錫與 p 型硫化亞錫形成之 pn 接面可當作可變電阻的開關(selector);此可變電阻的操作電壓(set/reset voltage)低,分別為 Vset = 0.38 V 與 Vreset = - 0.15 V;高低組態阻值比高達 544 倍;此元件不需要 forming process 且有非線性電流電壓特性曲線;且將此多層膜堆疊作成微米結構時也可保有電阻轉換的效應。因此本電阻式記憶體元件在省電且高記憶密度的記憶體元件上,深具應用的潛力。
There are two research topics in this work. The first one is the investigation on water layers on free-standing surfaces. Herein, it was observed that a 100–170 nm-thick water layer formed on the free-standing Si3N4 films in
microchannel chips designed for observing liquid samples by transmission electron microscopy (TEM). This water layer is surprisingly stable against the surface tension of water, and its thickness is beyond expectation.
In this work, the thickness and the structure of water layers were analyzed by electron energy loss spectroscopy (EELS) and the quantitative particle counting method. Results show that the thickness of water layers is insensitive to microchannel gap heights, particle concentrations, and particle sizes. Furthermore, the microchannel was opened after forming water layers. It was found that the water layers formed only on free-standing Si3N4 films, and there is no water layer formed on the Si3N4 deposited on a Si substrate. Consequently,
the water layer and the free-standing Si3N4 film together sandwiched by the air were taken as a system remaining at a constant total thickness. The Casimir-Lifshitz effect may have played a role in forming and/or holding stable
of these free-standing layer systems.
The second topic in the work is focused on self-assembled tin dioxide for resistive-switching devices. Resistive random access memory is a promising device compared to current mainstream memories. In this study, a forming-free resistive switching structure, Ag/tin-doped indium oxide (ITO)/SnO2-x (defined as SnO2 with oxygen vacancies)/SnS/Mo was demonstrated with nonlinear
current–voltage characteristics, low set/reset voltage, and high on-state to off-state ratio. The interface between ITO and self-assembled SnO2-x contributes
to the resistive-switching behavior. Besides, a p-n junction of p-SnS/n-SnO2-x acts as a selector. Hence, it shows great potential for low-power devices and
solving the sneak path problem in cross-bar memory arrays. Furthermore, a micro-/nano-structured resistive switching device was demonstrated successfully.
摘要..................................................................................................................I
Abstract........................................................................................................III
誌謝.................................................................................................................V
List of Figures.............................................................................................XII
List of Tables...........................................................................................XVII
Part A Investigation of Water Layers on Free-standing Films .........1
Chapter A1 Introduction to liquids on solid surfaces..............................1
A1.1 Physical phenomena of liquids on solid surfaces .......................1
A1.2 Motivation of this work...............................................................2
Chapter A2 Literature review....................................................................3
A2.1 The water layer on free-standing solid films ..............................3
A2.2 Conventional understanding of water layer adsorbed on solid
surfaces .......................................................................................4
A2.3 Casimir-Lifshitz effect, the long-ranged van der Waals force....4
A2.4 The free-standing water layer – soap bubbles.............................7
Chapter A3 Experimental procedure and instruments for
investigation on water layers ......................................................................10
A3.1 K-kit: the microchannel device .................................................10
A3.2 Experimental procedure for making water layers.....................11
A3.3 Instruments used in water layer characterization......................15
A3.3.1 Transmission electron microscopy (TEM) ...........................15
A3.3.2 Scanning electron microscope (SEM) ...................................20
Chapter A4 Results and discussion of the investigation on water
layers
IX
A4.1 The optimal procedure to form water layers.............................21
A4.2 Measuring water layer thickness by EELS ...............................24
A4.3 Exploring the structure and the thickness of water layers by the
quantitative particle counting method ......................................25
A4.3.1 The structure of water layers.................................................25
A4.3.2 The effect of PS-bead concentration/size and the K-kit gap
height on water layer thickness.............................................28
A4.3.3 The effect of Si-substrate on water layer thickness.............31
A4.3.4 The effect of nitride layer thickness on water layer
thickness………………………………………………..…… 37
A4.3.5 The ethanol layers...................................................................42
A4.4 The mechanism of forming water layers ..................................43
Chapter A5 Conclusion.............................................................................50
Chapter A6 Future prospect ....................................................................51
Part B Self-assembled Tin Dioxide for Forming-free Resistive
Random-access Memory Application ........................................................52
Chapter B1. Introduction of the resistive random-access memory
(RRAM)…………………………………………………………………...52
B1.1 Advantages of the resistive random-access memory (RRAM) 52
B1.2 Working principles of RRAM...................................................54
B1.2.1 Forming process of resistive-switching devices....................55
B1.2.2 Operation procedure of RS devices.......................................55
B1.2.3 Key performance indexes of RRAM .....................................56
B1.3 Sneak path problem...................................................................57
B1.4 Motivation of this work.............................................................59
Chapter B2. Literature review.................................................................61
B2.1 Resistive-switching mechanisms ..............................................61
X
B2.2 Materials for RS devices...........................................................63
B2.3 I–V nonlinearity ........................................................................64
Chapter B3. Experimental procedure and instruments to fabricate
resistive-switching devices...........................................................................65
B3.1 Experimental procedure ............................................................65
B3.2 Experimental instrument ...........................................................70
B3.2.1 Grazing incidence X-ray diffractometer (GIXRD)..............70
B3.2.2 Transmission electron microscopy (TEM) ...........................72
B3.2.3 Electrical measurement and instrument...............................74
Chapter B4. Results and discussion of RS devices.................................75
B4.1 Thin-filmed resistive-switching devices...................................75
B4.1.1 The effect of self-assembled SnO2-x layers on RS devices....75
B4.1.2 The effect of an ITO layer on RS devices .............................78
B4.1.3 Optimized thin-filmed resistive-switching devices...............79
B4.2 Nanostructured resistive-switching devices..............................81
B4.2.1 Thermal evaporating SnS layers ...........................................81
B4.2.2 Nanostructured resistive-resisting switching devices..........82
B4.3 Discussion on the mechanism of resistive switching for
Ag/ITO/SnO2-x/SnS/Mo............................................................84
Chapter B5. Conclusion............................................................................87
Chapter B6. Future prospect....................................................................88
Reference ......................................................................................................89
List of publication and patent.....................................................................95
Appendix.......................................................................................................98
Chapter S1. Experimental procedure of the preparation of K-kit.......99
Chapter S2. Results and discussion of the preparation of K-kit ..........99
XI
S2.1. Pretesting loading the solution in K-kits...................................99
S2.2. The effect of surface conditions and the structure of
microchannels on the loading and drying processes ...........101
S2.3. The effect of heating on drying processes ..............................105
A1. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A.
Witten, capillary flow as the cause of ring stains from dried liquid drops,
Nature 389, 827 (1997).
A2. P. J. Yunker, T. Still, M. A. Lohr and A. G. Yodh, suppression of the
coffee-ring effect by shape-dependent capillary interactions, Nature 476,
308 (2011).
A3. J. Thomson, on certain curious motions observable on the surfaces of wine
and other alcoholic liquours, Philos. Mag. 10, 330 (1855).
A4. H. J. Lee and S. Michielsen, lotus effect: superhydrophobicity, J. Text. Inst.
97, 455 (2006).
A5. M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S.
Nakamura and K. Uchida, theoretical explanation of the lotus effect:
superhydrophobic property changes by removal of nanostructures from the
surface of a lotus leaf, Langmuir 31, 7355 (2015).
A6. A. Lafuma and D. Quere, superhydrophobic states, Nat. Mater. 2, 457
(2003).
A7. W. S. N. Trimmer, microrobots and micromechanical systems, Sens.
Actuators 19, 267 (1989).
A8. F. London, the general theory of molecular forces, Trans. Faraday Soc. 33,
8 (1937).
A9. P. Gravesen, J. Branebjerg and O. S. Jensen, Microfluidics-a review, J.
Mioromech. Microeng. 3, 168 (1993).
A10. J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M. E. Warkianic and W.
Li, fundamentals and applications of inertial microfluidics: a review, Lab
90
Chip 16, 10 (2016).
A11. P. J. Yunker, T. Still1, M. A. Lohr and A. G. Yodh, Suppression of the
coffee-ring effect by shape-dependent capillary interactions, Nature 476,
308 (2011).
A12. J. M. Grogan, N. M. Schneider, F. M. Ross and H. H. Bau, bubble and
pattern formation in liquid induced by an electron beam, Nano Lett. 14,
359 (2014).
A13. G. Zhu, Y. Jiang, W. Huang, H. Zhang, Fang Lin and C. Jin, atomic
resolution liquid-cell transmission electron microscopy investigations of
the dynamics of nanoparticles in ultrathin liquids, Chem. Commun. 49,
10944 (2013).
A14. K. L. Liu, novel microchip (K-kit) for in-situ transmission electron
microscopy of living organisms in aqueous conditions, PhD thesis,
National Tsing-Hua University, 2010.
A15. S. E. Lai, Y. J. Hong, Y. T. Chen, Y. T. Kang, P. Chang and T. R. Yew,
direct-writing of Cu nano-patterns with an electron beam, Microsc.
Microanal. 21, 1639 (2015).
A16. G. Palasantzas, V. B. Svetovoy and P. J. van Zwol, influence of ultrathin
water layer on the van der Waals/Casimir force between gold surfaces,
Phys. Rev. B: Condens. Matter Mater. Phys. 79, 235434 (2009).
A17. D. Ganta, E. B. Dale and A. T. Rosenberger, measuring sub-nm adsorbed
water layer thickness and desorption rate using a fused-silica
whispering-gallery microresonator, Meas. Sci. Technol. 25, 055206 (2014).
A18. E. S. Sabisky and C. H. Anderson, Verification of the Lifshitz theory of the
van der Waals potential using liquid-helium films, Phys. Rev. A 7, 790
(1973).
91
A19. J. Israelachvili and D. Tabor, the measurement of Van der Waals dispersion
forces in the range of 1.5 to 130 nm, Proc. R. Soc. London, Ser. A 331, 19
(1972).
A20. A. W. Rodriguez, F. Capasso1 and S. G. Johnson, the Casimir effect in
microstructured geometries, Nat. Photonics 5, 211 (2011).
A21. H. B. G. Casimir, on the attraction between two perfectly conducting
plates, Proc. K. Ned. Akad. Wet., Ser. C: Biol. Med. Sci. 51, 793 (1948).
A22. E. M. Lifshitz, the theory of molecule attractive force between solids, Sov.
Phys. 2, 73 (1955).
A23. P. W. Milonni and M.-L. Shih, Casimir force, Contemp. Phys. 33, 313
(1992).
A24. Nature news feature: feel the force, Nature 447, 772 (2007).
A25. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and F. Capasso,
Quantum mechanical actuation of microelectromechanical systems by the
Casimir force, Science 291, 1941 (2001).
A26. J. N. Munday, Federico Capasso and V. Adrian Parsegian, measured
long-range repulsive Casimir–Lifshitz forces, Nature 457, 170 (2009).
A27. H. M. Princen and S. G. Mason, optical interference in curved soap films,
J. Coll. Sci. 20, 453 (1965).
A28. Y. D. Afanasyev, G. T. Andrews and C. G. Deacon, measuring soap bubble
thickness with color matching, Am. J. Phys. 79, 1079 (2011).
A29. H. M. Tarkan, S. Gelinas and J. A. Finch, measurement of thickness and
composition of a solvent film on a bubble, J. Colloid Interf. Sci. 297 732
(2006).
A30. https://www.youtube.com/watch?v=4qwrRRnVLUM
A31. http://soapbubble.dk/english/
92
A32. K. L. Liu, C. C. Wu, Y. J. Huang, H. L. Peng, H. Y. Chang, P. Chang, L.
Hsu and T. R. Yew, novel microchip for in situ TEM imaging of living
organisms and bio-reactions in aqueous conditions. Lab Chip 8, 1915
(2008).
A33. J. C. H. Spence, High-resolution Electron Microscopy, Oxford University
Press, Oxford, 2003.
A34. H. W. Chen, R. Gouk, S. Verhaverbeke and R. J. Visser, non-stiction
performance of various post wet-clean drying schemes on
high-aspect-ratio device structures, ECS Trans. 58, 205 (2013).
A35. D. O. Shah, Thin Liquid Films and Boundary Layers: Special Discussion
of the Faraday Society, Academic press, New Work, 1971.
B1. 2013 ITRS Summary [http://www.itrs.net/].
B2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, the missing
memristor found, Nature 453, 80 (2008).
B3. J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, metal oxide
memories based on thermochemical and valence change mechanisms, MRS
Bull. 37, 131 (2012).
B4. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru,
and C. S. Hwang, emerging memories: resistive switching mechanisms and
current status, Rep. Prog. Phys. 75, 076502 (2012).
B5. A. Sawa, resistive switching in transition metal oxides, Mater. Today 11, 28
(2008).
B6. R. Waser, R. Dittmann, G. Staikov, and K. Szot, redox-based resistive
switching memories–nanoionic mechanisms, prospects, and challenges,
Adv. Mater. 21, 2632 (2009).
B7. J. J. Yang, D. B. Strukov, and D. R. Stewart, memristive devices for
93
computing, Nat. Nanotechnol. 8, 13 (2013).
B8. E. Linn, R. Rosezin, C. Kugeler, and R. Waser, complementary resistive
switches for passive nanocrossbar memories, Nat. Mater. 9, 403 (2010).
B9. B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.
P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T.
Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.
J. Wouters, J. A. Kittl, and M. Jurczak, 10  10 nm2 Hf/HfOx crossbar
resistive RAM with excellent performance, reliability and low-energy
operation, IEDM Tech. Dig., 2011, 31.6.1.
B10. W. C. Chien, Y. R. Chen, Y. C. Chen, A. T. H. Chuang, F. M. Lee, Y. Y. Lin,
E. K. Lai, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, A forming-free WOX
resistive memory using a novel self-aligned field enhancement feature with
excellent reliability and scalability, IEDM Tech. Dig., 2010, 19.2.1.
B11. R. Waser and M. Aono, nanoionics-based resistive switching memories,
Nat. Mater. 6, 833 (2007).
B12. D. K. Schroder, Semiconductor Material and Device Characterization,
New Jersey, 2006.
B13. R. Meyer, L. Schloss, J. Brewer, and R. Lambertson, Oxide dual-layer
memory element for scalable non-volatile cross-point memory technology,
NVMTS, 2008, 1
B14. L. Zhu, J. Zhou, Z. Guo, and Z. Sun, an overview of materials issues in
resistive random access memory, J. Materiomics 1, 285 (2015).
B15. D. Acharyya, A. Hazra, and P. Bhattacharyya, a journey towards reliability
improvement of TiO2 based Resistive Random Access Memory: A review,
Microeletron. Reliab. 54, 541 (2014)
B16. A. Prakash, D. Jana, and S. Maikap, TaOx-based resistive switching
94
memories: prospective and challenges, Nanoscale Res. Lett. 8, 418 (2013)
B17. J. J. Yang, M. X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W. D. Li, W.
Yi, D. A. A. Ohlberg, B. J. Choi, W. Wu, J. H. Nickel, G. Medeiros-Ribeiro,
and R. S. Williams, Engineering nonlinearity into memristors for passive
crossbar applications, Appl. Phys. Lett. 100, 113501 (2012)
B18. Y. Yang, J. Lee, S. Lee, C. H. Liu, Z. Zhong, and Wei Lu, oxide resistive
memory with functionalized graphene as built-in selector element, Adv.
Mater. 26, 3693 (2014)
B19. J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J.
Tate, band-structure, optical properties, and defect physics of the
photovoltaic semiconductor SnS, Appl. Phys. Lett. 100, 032104 (2012)
B20. B. S. Tosun, R. K. Feist, A. Gunawan, K. A. Mkhoyan, S. A. Campbell,
and E. S. Aydil, sputter deposition of semicrystalline tin dioxide films,
Thin Solid Films 520, 2554 (2012)
B21. W. Lu, D. S. Jeong, M. Kozicki, and R. Waser, electrochemical
metallization cells—blending nanoionics into nanoelectronics, MRS Bull.
37, 124 (2012).
B22. I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E.
Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S.
Kim, I. K. Yoo, U. I. Chung, J. T. Moon, and B. I. Ryu, multi-layer
cross-point binary oxide resistive memory (OxRRAM) for post-NAND
storage application, IEDM Tech. Dig., 2005, 750.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *