|
A1. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827 (1997). A2. P. J. Yunker, T. Still, M. A. Lohr and A. G. Yodh, suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature 476, 308 (2011). A3. J. Thomson, on certain curious motions observable on the surfaces of wine and other alcoholic liquours, Philos. Mag. 10, 330 (1855). A4. H. J. Lee and S. Michielsen, lotus effect: superhydrophobicity, J. Text. Inst. 97, 455 (2006). A5. M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura and K. Uchida, theoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf, Langmuir 31, 7355 (2015). A6. A. Lafuma and D. Quere, superhydrophobic states, Nat. Mater. 2, 457 (2003). A7. W. S. N. Trimmer, microrobots and micromechanical systems, Sens. Actuators 19, 267 (1989). A8. F. London, the general theory of molecular forces, Trans. Faraday Soc. 33, 8 (1937). A9. P. Gravesen, J. Branebjerg and O. S. Jensen, Microfluidics-a review, J. Mioromech. Microeng. 3, 168 (1993). A10. J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M. E. Warkianic and W. Li, fundamentals and applications of inertial microfluidics: a review, Lab 90 Chip 16, 10 (2016). A11. P. J. Yunker, T. Still1, M. A. Lohr and A. G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature 476, 308 (2011). A12. J. M. Grogan, N. M. Schneider, F. M. Ross and H. H. Bau, bubble and pattern formation in liquid induced by an electron beam, Nano Lett. 14, 359 (2014). A13. G. Zhu, Y. Jiang, W. Huang, H. Zhang, Fang Lin and C. Jin, atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids, Chem. Commun. 49, 10944 (2013). A14. K. L. Liu, novel microchip (K-kit) for in-situ transmission electron microscopy of living organisms in aqueous conditions, PhD thesis, National Tsing-Hua University, 2010. A15. S. E. Lai, Y. J. Hong, Y. T. Chen, Y. T. Kang, P. Chang and T. R. Yew, direct-writing of Cu nano-patterns with an electron beam, Microsc. Microanal. 21, 1639 (2015). A16. G. Palasantzas, V. B. Svetovoy and P. J. van Zwol, influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces, Phys. Rev. B: Condens. Matter Mater. Phys. 79, 235434 (2009). A17. D. Ganta, E. B. Dale and A. T. Rosenberger, measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator, Meas. Sci. Technol. 25, 055206 (2014). A18. E. S. Sabisky and C. H. Anderson, Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films, Phys. Rev. A 7, 790 (1973). 91 A19. J. Israelachvili and D. Tabor, the measurement of Van der Waals dispersion forces in the range of 1.5 to 130 nm, Proc. R. Soc. London, Ser. A 331, 19 (1972). A20. A. W. Rodriguez, F. Capasso1 and S. G. Johnson, the Casimir effect in microstructured geometries, Nat. Photonics 5, 211 (2011). A21. H. B. G. Casimir, on the attraction between two perfectly conducting plates, Proc. K. Ned. Akad. Wet., Ser. C: Biol. Med. Sci. 51, 793 (1948). A22. E. M. Lifshitz, the theory of molecule attractive force between solids, Sov. Phys. 2, 73 (1955). A23. P. W. Milonni and M.-L. Shih, Casimir force, Contemp. Phys. 33, 313 (1992). A24. Nature news feature: feel the force, Nature 447, 772 (2007). A25. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and F. Capasso, Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science 291, 1941 (2001). A26. J. N. Munday, Federico Capasso and V. Adrian Parsegian, measured long-range repulsive Casimir–Lifshitz forces, Nature 457, 170 (2009). A27. H. M. Princen and S. G. Mason, optical interference in curved soap films, J. Coll. Sci. 20, 453 (1965). A28. Y. D. Afanasyev, G. T. Andrews and C. G. Deacon, measuring soap bubble thickness with color matching, Am. J. Phys. 79, 1079 (2011). A29. H. M. Tarkan, S. Gelinas and J. A. Finch, measurement of thickness and composition of a solvent film on a bubble, J. Colloid Interf. Sci. 297 732 (2006). A30. https://www.youtube.com/watch?v=4qwrRRnVLUM A31. http://soapbubble.dk/english/ 92 A32. K. L. Liu, C. C. Wu, Y. J. Huang, H. L. Peng, H. Y. Chang, P. Chang, L. Hsu and T. R. Yew, novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 1915 (2008). A33. J. C. H. Spence, High-resolution Electron Microscopy, Oxford University Press, Oxford, 2003. A34. H. W. Chen, R. Gouk, S. Verhaverbeke and R. J. Visser, non-stiction performance of various post wet-clean drying schemes on high-aspect-ratio device structures, ECS Trans. 58, 205 (2013). A35. D. O. Shah, Thin Liquid Films and Boundary Layers: Special Discussion of the Faraday Society, Academic press, New Work, 1971. B1. 2013 ITRS Summary [http://www.itrs.net/]. B2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, the missing memristor found, Nature 453, 80 (2008). B3. J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, metal oxide memories based on thermochemical and valence change mechanisms, MRS Bull. 37, 131 (2012). B4. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, emerging memories: resistive switching mechanisms and current status, Rep. Prog. Phys. 75, 076502 (2012). B5. A. Sawa, resistive switching in transition metal oxides, Mater. Today 11, 28 (2008). B6. R. Waser, R. Dittmann, G. Staikov, and K. Szot, redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21, 2632 (2009). B7. J. J. Yang, D. B. Strukov, and D. R. Stewart, memristive devices for 93 computing, Nat. Nanotechnol. 8, 13 (2013). B8. E. Linn, R. Rosezin, C. Kugeler, and R. Waser, complementary resistive switches for passive nanocrossbar memories, Nat. Mater. 9, 403 (2010). B9. B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, 10 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation, IEDM Tech. Dig., 2011, 31.6.1. B10. W. C. Chien, Y. R. Chen, Y. C. Chen, A. T. H. Chuang, F. M. Lee, Y. Y. Lin, E. K. Lai, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, A forming-free WOX resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability, IEDM Tech. Dig., 2010, 19.2.1. B11. R. Waser and M. Aono, nanoionics-based resistive switching memories, Nat. Mater. 6, 833 (2007). B12. D. K. Schroder, Semiconductor Material and Device Characterization, New Jersey, 2006. B13. R. Meyer, L. Schloss, J. Brewer, and R. Lambertson, Oxide dual-layer memory element for scalable non-volatile cross-point memory technology, NVMTS, 2008, 1 B14. L. Zhu, J. Zhou, Z. Guo, and Z. Sun, an overview of materials issues in resistive random access memory, J. Materiomics 1, 285 (2015). B15. D. Acharyya, A. Hazra, and P. Bhattacharyya, a journey towards reliability improvement of TiO2 based Resistive Random Access Memory: A review, Microeletron. Reliab. 54, 541 (2014) B16. A. Prakash, D. Jana, and S. Maikap, TaOx-based resistive switching 94 memories: prospective and challenges, Nanoscale Res. Lett. 8, 418 (2013) B17. J. J. Yang, M. X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W. D. Li, W. Yi, D. A. A. Ohlberg, B. J. Choi, W. Wu, J. H. Nickel, G. Medeiros-Ribeiro, and R. S. Williams, Engineering nonlinearity into memristors for passive crossbar applications, Appl. Phys. Lett. 100, 113501 (2012) B18. Y. Yang, J. Lee, S. Lee, C. H. Liu, Z. Zhong, and Wei Lu, oxide resistive memory with functionalized graphene as built-in selector element, Adv. Mater. 26, 3693 (2014) B19. J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS, Appl. Phys. Lett. 100, 032104 (2012) B20. B. S. Tosun, R. K. Feist, A. Gunawan, K. A. Mkhoyan, S. A. Campbell, and E. S. Aydil, sputter deposition of semicrystalline tin dioxide films, Thin Solid Films 520, 2554 (2012) B21. W. Lu, D. S. Jeong, M. Kozicki, and R. Waser, electrochemical metallization cells—blending nanoionics into nanoelectronics, MRS Bull. 37, 124 (2012). B22. I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, and B. I. Ryu, multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application, IEDM Tech. Dig., 2005, 750. |