|
[1] Vining, C. B. Semiconductors are cool. Nature 413, 577–578 (2001). [2] Yadav, A., Pipe, K. P. & Shtein, M. Fiber-based flexible thermoelectric power generator. J. Power Sources 175, 909–913 (2008). [3] LaLonde, A. D., Pei, Y., Wang, H. & Jeffrey Snyder, G. Lead telluride alloy thermoelectrics. Mater. Today 14, 526–532 (2011). [4] Kasap, S. O. Principles of electronic materials and devices. (McGraw-Hill, 2006). § 4.8.2. [5] D.M. Rowe, CRC Handbook of Thermoelectrics (Taylor & Francis, 2010). Ch.2. [6] Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). [7] Yim, W. M. & Rosi, F. D. Compound tellurides and their alloys for peltier cooling—A review. Solid-State Electron. 15, 1121–1140 (1972). [8] Lan, Y., Minnich, A. J., Chen, G. & Ren, Z. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach. Adv. Funct. Mater. 20, 357–376 (2010). [9] Son, J. H. et al. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3. J. Alloys Compd. 566, 168–174 (2013). [10] Takashiri, M. et al. Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J. Appl. Phys. 104, 084302–084302–6 (2008). [11] Huang, M.-J., Chang, T.-M., Chong, W.-Y., Liu, C.-K. & Yu, C.-K. A new lattice thermal conductivity model of a thin-film semiconductor. Int. J. Heat Mass Transf. 50, 67–74 (2007). [12] Medlin, D. L. & Snyder, G. J. Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science. Curr. Opin. Colloid Interface Sci. 14, 226–235 (2009). [13] Caillat, T., Carle, M., Pierrat, P., Scherrer, H. & Scherrer, S. Thermoelectric properties of (BixSb1−x)2Te3 single crystal solid solutions grown by the T.H.M. method. J. Phys. Chem. Solids 53, 1121–1129 (1992). [14] Drabble, J. R. & Wolfe, R. Anisotropic Galvanomagnetic Effects in Semiconductors. Proc. Phys. Soc. Sect. B 69, 1101 (1956). [15] Drabble, J. R., Groves, R. D. & Wolfe, R. Galvanomagnetic Effects in n-Type Bismuth Telluride. Proc. Phys. Soc. 71, 430 (1958). [16] Drabble, J. R. Galvanomagnetic Effects in p-Type Bismuth Telluride. Proc. Phys. Soc. 72, 380 (1958). [17] Miller, G. R. & Li, C.-Y. Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173–177 (1965). [18] Starý, Z., Horák, J., Stordeur, M. & Stölzer, M. Antisite defects in Sb2−xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29–34 (1988). [19] Kadhim, A., Hmood, A. & Abu Hassan, H. Preparation of Bi0.4Sb1.6Se3xTe3(1−x) hexagonal rods and effect of Se on structure and electrical property. Solid State Sci. 21, 110–115 (2013). [20] Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J. & Badding, J. V. Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb 1.5 Bi 0.5 Te 3. Chem. Mater. 13, 2068–2071 (2001). [21] Itskevich, E. S., Kashirskaya, L. M. & Kraidenov, V. F. Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors 31, 276–278 (1997). [22] Meng, J. F. et al. Pressure Tuning in the Chemical Search for Improved Thermoelectric Materials: NdxCe3-xPt3Sb4. Chem. Mater. 12, 197–201 (2000). [23] Thonhauser, T., Scheidemantel, T., Sofo, J., Badding, J. & Mahan, G. Thermoelectric properties of Sb2Te3 under pressure and uniaxial stress. Phys. Rev. B 68, (2003). [24] Ovsyannikov, S. V. et al. Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. J. Appl. Phys. 104, 053713 (2008). [25] Larson, P., Mahanti, S. D. & Kanatzidis, M. G. Electronic structure and transport of Bi2Te3 and BaBiTe3. Phys. Rev. B 61, 8162 (2000). [26] Wang, G. & Cagin, T. Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Phys. Rev. B 76, (2007). [27] Mathieson, I. & Bradley, R. H. Improved adhesion to polymers by UV/ozone surface oxidation. Int. J. Adhes. Adhes. 16, 29–31 (1996). [28] Shenton, M. J. & Stevens, G. C. Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J. Phys. Appl. Phys. 34, 2761 (2001). [29] Dong, H. & Bell, T. State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surf. Coatings Technol. 111, 29–40 (1999). [30] Crawford, G. Flexible Flat Panel Displays. (John Wiley & Sons, 2005). § 6.1.3 [31] Burgreen, D. Elements of thermal stress analysis. (C.P. Press, 1971). Ch. 2. [32] Tu, K.-N. Electronic Thin-Film Reliability. (Cambridge University Press, 2010). Ch. 6. [33] Cullity, B. D. Elements of X-Ray Diffraction. (Addison-Wesley Publishing Company, 1978). Ch. 14. [34] Committee, S. of A. E. I. and S. T. & Committee, S. of A. E. F. D. and E. Residual Stress Measurement by X-Ray Diffraction. (Society of Automotive Engineers, Incorporated, 1976). Ch. 3. [35] Egitto, F. D., Matienzo, L. J., Blackwell, K. J. & Knoll, A. R. Oxygen plasma modification of polyimide webs: effect of ion bombardment on metal adhesion. J. Adhes. Sci. Technol. 8, 411–433 (1994). [36] Bessas, D. et al. Lattice dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states. Phys. Rev. B 86, (2012). [37] D’Heurle, F. M. & Harper, J. M. E. Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 171, 81–92 (1989). [38] Windischmann, H. An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800–1807 (1987). [39] Marchenkov, E. A. & Shipul’, V. P. Thermal expansion of semiconductor materials. J. Eng. Phys. Thermophys. 66, 547–551 (1994). [40] Thonhauser, T., Jeon, G., Mahan, G. & Sofo, J. Stress-induced defects in Sb2Te3. Phys. Rev. B 68, (2003). |