帳號:guest(3.133.135.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳姵如
論文名稱(中文):殘餘應力效應對沉積於可撓式基板之碲化鉍系薄膜熱電傳輸性質的影響
論文名稱(外文):Effect of residual stress on thermoelectric transport properties of Bi-Te based thin films on flexible substrates
指導教授(中文):廖建能
口試委員(中文):甘炯耀
朱旭山
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031507
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:熱電材料殘餘應力
相關次數:
  • 推薦推薦:0
  • 點閱點閱:337
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
碲化鉍系統為室溫範圍有優異表現之熱電材料,許多研究嘗試將碲化鉍系統薄膜元件建立在可撓式基板上,但在製作過程有可能導入殘餘應力在熱電薄膜中。本研究計畫係在聚亞醯胺基板上預先施加一單軸向張應力,以濺鍍方式沉積P型和N型兩種碲化鉍系統熱電薄膜,經高溫熱退火後,量測薄膜之殘餘壓應力及熱電性質,藉此探討薄膜殘餘壓應力對聚亞醯胺基板上之碲化鉍系薄膜熱電傳輸性質之影響。
研究結果顯示隨著基板拉伸形變量的增加,當退火處理後釋放外加負載釋後在薄膜中之殘餘壓應力也隨之增加。而隨著殘餘壓應力的增加,載子濃度在P型熱電薄膜中呈現上升而在N型熱電薄膜中呈現下降的趨勢。P型載子濃度上升是由於在P型熱電薄膜內之缺陷主要為SbTe錯位缺陷,壓應力之存在降低SbTe錯位缺陷的生成能,提升SbTe錯位缺陷的濃度。N型載子濃度下降則是由於在N型熱電薄膜內之缺陷主要為VTe空位缺陷,壓應力的存在將使空位缺陷濃度減少。在殘餘壓應力作用下此兩種薄膜的熱電功率因子皆獲得改善,此結果顯示透過應力的調控可進一步提升在可撓式基板上碲化鉍系薄膜之熱電性質。
第1章 緒論 1
1.1 前言 1
1.2 研究動機 3
第2章 文獻回顧 4
2.1 熱電材料 4
2.1.1 熱電效應原理 5
2.1.2 熱電優值 10
2.1.3 熱電元件轉換效率 12
2.1.4 提升熱電優值 13
2.1.5 碲化鉍(Bi2Te3)系統熱電材料介紹 15
2.1.6 應力與熱電材料 18
2.2 軟性電子元件 19
2.2.1 軟性基板特性 21
2.2.2 軟性基板附膜 22
2.3 薄膜應力 24
2.3.1 應力量測方法簡介 26
2.3.1.1 曲率量測應力 27
2.3.1.2 X光量測應力 30
第3章 實驗流程 32
3.1 實驗流程 32
3.1.1 軟性基板 34
3.1.2 磁控濺鍍 37
3.2 量測方法 38
3.2.1 Seebeck係數量測 38
3.2.2 Hall效應量測 40
3.2.3 α-step薄膜輪廓量測 41
3.2.4 X光繞射應力分析 42
3.2.5 表面形貌分析 43
第4章 結果與討論 44
4.1 熱電薄膜鍍膜前後表面形貌分析 44
4.2 熱電性質量測分析 48
4.3 P型和N型熱電薄膜內殘餘應力分析 49
4.4 殘餘壓應力對熱電薄膜性質影響 55
第5章 結論 62
第6章 參考文獻 63
[1] Vining, C. B. Semiconductors are cool. Nature 413, 577–578 (2001).
[2] Yadav, A., Pipe, K. P. & Shtein, M. Fiber-based flexible thermoelectric power generator. J. Power Sources 175, 909–913 (2008).
[3] LaLonde, A. D., Pei, Y., Wang, H. & Jeffrey Snyder, G. Lead telluride alloy thermoelectrics. Mater. Today 14, 526–532 (2011).
[4] Kasap, S. O. Principles of electronic materials and devices. (McGraw-Hill, 2006).
§ 4.8.2.
[5] D.M. Rowe, CRC Handbook of Thermoelectrics (Taylor & Francis, 2010). Ch.2.
[6] Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
[7] Yim, W. M. & Rosi, F. D. Compound tellurides and their alloys for peltier cooling—A review. Solid-State Electron. 15, 1121–1140 (1972).
[8] Lan, Y., Minnich, A. J., Chen, G. & Ren, Z. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach. Adv. Funct. Mater. 20, 357–376 (2010).
[9] Son, J. H. et al. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3. J. Alloys Compd. 566, 168–174 (2013).
[10] Takashiri, M. et al. Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J. Appl. Phys. 104, 084302–084302–6 (2008).
[11] Huang, M.-J., Chang, T.-M., Chong, W.-Y., Liu, C.-K. & Yu, C.-K. A new lattice thermal conductivity model of a thin-film semiconductor. Int. J. Heat Mass Transf. 50, 67–74 (2007).
[12] Medlin, D. L. & Snyder, G. J. Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science. Curr. Opin. Colloid Interface Sci. 14, 226–235 (2009).
[13] Caillat, T., Carle, M., Pierrat, P., Scherrer, H. & Scherrer, S. Thermoelectric properties of (BixSb1−x)2Te3 single crystal solid solutions grown by the T.H.M. method. J. Phys. Chem. Solids 53, 1121–1129 (1992).
[14] Drabble, J. R. & Wolfe, R. Anisotropic Galvanomagnetic Effects in Semiconductors. Proc. Phys. Soc. Sect. B 69, 1101 (1956).
[15] Drabble, J. R., Groves, R. D. & Wolfe, R. Galvanomagnetic Effects in n-Type Bismuth Telluride. Proc. Phys. Soc. 71, 430 (1958).
[16] Drabble, J. R. Galvanomagnetic Effects in p-Type Bismuth Telluride. Proc. Phys. Soc. 72, 380 (1958).
[17] Miller, G. R. & Li, C.-Y. Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173–177 (1965).
[18] Starý, Z., Horák, J., Stordeur, M. & Stölzer, M. Antisite defects in Sb2−xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29–34 (1988).
[19] Kadhim, A., Hmood, A. & Abu Hassan, H. Preparation of Bi0.4Sb1.6Se3xTe3(1−x) hexagonal rods and effect of Se on structure and electrical property. Solid State Sci. 21, 110–115 (2013).
[20] Polvani, D. A., Meng, J. F., Chandra Shekar, N. V., Sharp, J. & Badding, J. V. Large Improvement in Thermoelectric Properties in Pressure-Tuned p-Type Sb 1.5 Bi 0.5 Te 3. Chem. Mater. 13, 2068–2071 (2001).
[21] Itskevich, E. S., Kashirskaya, L. M. & Kraidenov, V. F. Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors 31, 276–278 (1997).
[22] Meng, J. F. et al. Pressure Tuning in the Chemical Search for Improved Thermoelectric Materials: NdxCe3-xPt3Sb4. Chem. Mater. 12, 197–201 (2000).
[23] Thonhauser, T., Scheidemantel, T., Sofo, J., Badding, J. & Mahan, G. Thermoelectric properties of Sb2Te3 under pressure and uniaxial stress. Phys. Rev. B 68, (2003).
[24] Ovsyannikov, S. V. et al. Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. J. Appl. Phys. 104, 053713 (2008).
[25] Larson, P., Mahanti, S. D. & Kanatzidis, M. G. Electronic structure and transport of Bi2Te3 and BaBiTe3. Phys. Rev. B 61, 8162 (2000).
[26] Wang, G. & Cagin, T. Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Phys. Rev. B 76, (2007).
[27] Mathieson, I. & Bradley, R. H. Improved adhesion to polymers by UV/ozone surface oxidation. Int. J. Adhes. Adhes. 16, 29–31 (1996).
[28] Shenton, M. J. & Stevens, G. C. Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J. Phys. Appl. Phys. 34, 2761 (2001).
[29] Dong, H. & Bell, T. State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surf. Coatings Technol. 111, 29–40 (1999).
[30] Crawford, G. Flexible Flat Panel Displays. (John Wiley & Sons, 2005).
§ 6.1.3
[31] Burgreen, D. Elements of thermal stress analysis. (C.P. Press, 1971). Ch. 2.
[32] Tu, K.-N. Electronic Thin-Film Reliability. (Cambridge University Press, 2010). Ch. 6.
[33] Cullity, B. D. Elements of X-Ray Diffraction. (Addison-Wesley Publishing Company, 1978). Ch. 14.
[34] Committee, S. of A. E. I. and S. T. & Committee, S. of A. E. F. D. and E. Residual Stress Measurement by X-Ray Diffraction. (Society of Automotive Engineers, Incorporated, 1976). Ch. 3.
[35] Egitto, F. D., Matienzo, L. J., Blackwell, K. J. & Knoll, A. R. Oxygen plasma modification of polyimide webs: effect of ion bombardment on metal adhesion. J. Adhes. Sci. Technol. 8, 411–433 (1994).
[36] Bessas, D. et al. Lattice dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states. Phys. Rev. B 86, (2012).
[37] D’Heurle, F. M. & Harper, J. M. E. Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 171, 81–92 (1989).
[38] Windischmann, H. An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800–1807 (1987).
[39] Marchenkov, E. A. & Shipul’, V. P. Thermal expansion of semiconductor materials. J. Eng. Phys. Thermophys. 66, 547–551 (1994).
[40] Thonhauser, T., Jeon, G., Mahan, G. & Sofo, J. Stress-induced defects in Sb2Te3. Phys. Rev. B 68, (2003).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *