|
1. D. F. Austin, Water spinach (Ipomoea aquatica, Convolvulaceae) A food gone wild, Ethnobotany Research & Applications, 2007 5, 123-146. 2. M. A. Zeder, The Origins of Agriculture in the Near East, Current Anthropology, 2011, 52, 221-235. 3. M. A. Levinskikh, V. N. Sychev, T. A. Derendyaeva, O. B. Signalova, F. B. Salisbury, W. F Campbell et al., Analysis of the Spaceflight Effects on Growth and Development of Super Dwarf Wheat Grown on the Space Station Mir, Journal of Plant Physiology, 2000, 156, 522-529. 4. F. R. Dutcher, E. L. Hess, T. W. Halstead, Progress in Plant Research in Space, Advances in Space Research, 1994, 14, 159-171. 5. Y. Hari, C. L. Yang, E. Suryani, Maximizing Space Utilization in Plant Factory Through Crop Scheduling, Jurnal Sistem Informasi, 2012, 4, 201-206,. 6. Y. Hendrawan, B. D. Argo, M. B. Hermanto, S. Zhang, H. Murase, Development of a Fully Controlled Plant Factory for Moss Mat Production–Application of Intelligent Irrigation System, Robot Transporter, and Precision Artificial Lighting System. 7. J. Hataway, To Create Energy Efficient Vertical Farms, U. of Georgia Agronomist Focuses on Intelligent Light System, 2012, seedstock.com. 8. G. S. Singhal, G. Renger, S.K. Sopory, K-D. Irrgang, Govindjee, Concepts in photobiology: photosynthesis and photomorphogenesis, 1999, Springer. 9. K. J. McCree, Test of Current Definitions of Photosynthetically Active Radiation against Leaf Photosynthesis Data, Agricultural Meteorology, 1972, 10, 443-453. 10. R. A. Moss, W. E. Loomis, Absorption Spectra of Leaves .1. The Visible Spectrum, Plant Physiology, 1952, 27, 370-391. 11. N. R. Bulley, C. D. Nelson, E. B. Tregunna, Photosynthesis - Action Spectra for Leaves in Normal and Low Oxygen, Plant Physiology, 1969, 44, 678-684. 12. K. Luning, M. J. Dring, Action Spectra and Spectral Quantum Yield of Photosynthesis in Marine Macroalgae with Thin and Thick Thalli, Marine Biology, 1985, 87, 119-129. 13. R. G. Hurd, The Effect of an Incandescent Supplement on the Growth of Tomato Plants in Low Light, Ann Bot-London, 1974, 38, 613-623. 14. D. J. C. Friend, V. A. Helson, J. E. Fisher, The influence of the ratio of incandescent to fluorescent light on the flowering response of Marquis wheat grown under controlled conditions, Canadian Journal of Plant Science, 1961, 41, 418-427. 15. V. A. Helson, Comparison of Gro-Lux and Cool-White Fluorescent Lamps with and without Incandescent as Light Sources Used in Plant Growth Rooms for Growth and Development of Tomato Plants, Canadian Journal of Plant Science, 1965, 45, 461-466. 16. R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, T. S. Martin, Light-Emitting-Diodes as a Radiation Source for Plants, HortScience,1991, 26, 203-205. 17. M. E. Hoenecke, R. J. Bula, T. W. Tibbitts, Importance of Blue Photon Levels for Lettuce Seedlings Grown under Red-Light-Emitting Diodes, HortScience, 1992, 27, 427-430. 18. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi et al., Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes, Journal of the American Chemical Society, 2001, 123, 4304-4312. 19. R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu et al., Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes, Advanced Materials, 2011, 23, 2823-2827. 20. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa et al., Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, Journal of the American Chemical Society, 2003, 125, 12971-12979. 21. G. Zhou, C. L. Ho, W. Y. Wong, Q. Wang, D. Ma, L. Wang et al., Manipulating Charge-Transfer Character with Electron-Withdrawing Main-Group Moieties for the Color Tuning of Iridium Electrophosphors, Advanced Functional Materials, 2008, 18, 499-511. 22. C. H. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, R. Fröhlich et al., Deep-Blue-Emitting Heteroleptic Iridium(III) Complexes Suited for Highly Efficient Phosphorescent OLEDs, Chemistry of Materials, 2012, 24, 3684-3695. 23. H. K. Kim, S. H. Cho, J. R. Oh, Y. H. Lee, J. H. Lee, J. G. Lee et al., Deep blue, efficient, moderate microcavity organic light-emitting diodes, Organic Electronics, 2010, 11, 137-145. 24. J. Lee, N. Chopra, D. Bera, S. Maslov, S. H. Eom, Y. Zheng et al., Down-Conversion White Organic Light-Emitting Diodes Using Microcavity Structure, Advanced Energy Materials, 2011, 1, 174-178. 25. H. F. Wittmann, J. Grüner, R. H. Friend, G. W. C. Spencer, S. C. Moratti, A. B. Holmes, Microcavity Effect in a Single-Layer Polymer Light-Emitting Diode, Advanced Materials, 1995, 7, 541-544. 26. S. Han, C. Huang, Z. H. Lu, Color tunable metal-cavity organic light-emitting diodes with fullerene layer, Journal of Applied Physics, 2005, 97, 093102. 27. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, Weak microcavity effects in organic light-emitting devices, Physical Review B, 1998, 58, 3730-3740. 28. Z. Shen, P. E. Burrows, V. Bulović, S. R. Forrest, M. E. Thompson, Three-Color, Tunable, Organic Light-Emitting Devices, Science, 1997, 276, 2009-2011. 29. J. H. Jou, M. H. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen et al., Sunlight-style color-temperature tunable organic light-emitting diode, Applied Physics Letters, 2009, 95, 013307. 30. J. H. Jou, Y. L. Chen, J. R. Tseng, R. Z. Wu, J. J. Shyue, K. R. Justin Thomas et al., The use of a polarity matching and high-energy exciton generating host in fabricating efficient purplish-blue OLEDs from a sky-blue emitter, Journal of Materials Chemistry, 2012, 22, 15500-15506. 31. J. H. Jou, P. W. Chen, Y. L. Chen, Y. C. Jou, J. R. Tseng, R. Z. Wu et al., OLEDs with chromaticity tunable between dusk-hue and candle-light, Organic Electronics, 2013, 14, 47-54. 32. A. Bernanose, M. Comte and P. Vouaux, Sur Un Nouveau Mode Demission Lumineuse Chez Certains Composes Organiques, Journal De Chimie Physique Et De Physico-Chimie Biologique, 1953, 50, 64-68. 33. M. Pope, P. Magnante and H. P. Kallmann, Electroluminescence in Organic Crystals, Journal of Chemical Physics, 1963, 38, 2042-2043. 34. W. Helfrich and W. G. Schneide, Recombination Radiation in Anthracene Crystals, Physical Review Letters, 1965, 14, 229-231. 35. W. Helfrich and Schneide.Wg, Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene, Journal of Chemical Physics, 1966, 44, 2902. 36. P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Electrical-Conduction and Low-Voltage Blue Electro-Luminescence in Vacuum-Deposited Organic Films, Thin Solid Films, 1982, 94, 171-183. 37. C. W. Tang and S. A. Vanslyke, Organic Electroluminescent Diodes, Applied Physics Letters, 1987, 51, 913-915. 38. C. W. Tang, S. A. Vanslyke and C. H. Chen, Electroluminescence of Doped Organic Thin-Films, Journal of Applied Physics, 1989, 65, 3610-3616. 39. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Light-Emitting-Diodes Based on Conjugated Polymers, Nature, 1990, 347, 539-541. 40. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Flexible light-emitting diodes made from soluble conducting polymers, Nature, 1992, 357, 477-479. 41. J. Kido, M. Kohda, K. Okuyama and K. Nagai, Organic Electroluminescent Devices Based on Molecularly Doped Polymers, Applied Physics Letters, 1992, 61, 761-763. 42. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, White Light-Eittting Organic Electroluminescent Devices Using the Poly(N-vinylcarbazole) Emitter Layer Doped with 3 Fluorescent Dyes, Applied Physics Letters, 1994, 64, 815-817. 43. J. Kido, M. Kimura and K. Nagai, Multilayer White Light-Emitting Organic Electroluminescent Device, Science, 1995, 267, 1332-1334. 44. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami and K. Imai, Multilayered organic electroluminescent device using a novel starburst molecule, 4, 4’, 4’‐tris (3‐methylphenylphenylamino) triphenylamine, as a hole transport material, Applied Physics Letters, 1994, 65, 807-809. 45. S. Tokito, K. Noda and Y. Taga, Metal oxides as a hole-injecting layer for an organic electroluminescent device, Journal of Physics D-Applied Physics, 1996, 29, 2750-2753. 46. L. S. Hung, C. W. Tang and M. G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Applied Physics Letters, 1997, 70, 152-154. 47. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395, 151-154. 48. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, Journal of Applied Physics, 2001, 90, 5048-5051. 49. J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo, Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material, Applied Physics Letters, 1998, 73, 729-731. 50. J. Kido and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer, Applied Physics Letters, 1998, 73, 2866-2868. 51. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Y. Liu, Low-voltage organic electroluminescent devices using pin structures, Applied Physics Letters, 2002, 80, 139-141. 52. L. S. Liao, K. P. Klubek and C. W. Tang, High-efficiency tandem organic light-emitting diodes, Applied Physics Letters, 2004, 84, 167-169. 53. Y. Shao and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method, Applied Physics Letters, 2005, 86, 073510. 54. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source, Applied Physics Letters, 2006, 88, 193501. 55. Y. Sun and S. R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids, Nature Photonics, 2008, 2, 483-487. 56. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature, 2009, 459, 234-238. 57. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 2012, 492, 234-238. 58. J. H. Jou, C.Y. Hsieh, J.R. Tseng, S.H. Peng, Y.C Jou, J.H. Hong, S.M. Shen, M.C. Tang, P.C. Chen, C.H. Lin, Candle Light‐Style Organic Light‐Emitting Diodes, Advanced Functional Materials DOI:10.1002/adfm.201203209. 59. A. Dodabalapur, Organic light emitting diodes, Solid State Communications, 1997, 102, 259-267. 60. 吳柏賢, 碩士論文, 高效率橘紅光有機發光二極體元件之研製, 國立清華大學材料科學與工程研究所, 2012. 61. W. D. Gill, Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole, Journal of Applied Physics, 1972, 43, 5033-5040. 62. S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. F. Seidler and W. Riess, Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation, Physical Review B, 1999, 60, 8791-8797. 63. P. N. Murgatroyd, Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect, Journal of Physics D-Applied Physics, 1970, 3, 151. 64. 陳昱霖, 碩士論文,以天藍光染料製作高效率紫藍光有機發光二極體, 國立清華大學材料科學與工程研究所, 2012. 65. L. G. Thompson and S. E. Webber, External Heavy Atom Effect on Phosphorescence Spectra of Some Halonaphthalenes, Journal of Physical Chemistry, 1972, 76, 221-224. 66. T. Forster, *Zwischenmolekulare Energiewanderung Und Fluoreszenz, Annalen Der Physik, 1948, 2, 55-75. 67. D. L. Dexter, A Theory of Sensitized Luminescence in Solids, Journal of Chemical Physics, 1953, 21, 836-850 68. H. S. N. S. Miyata, Organic Electroluminescent Materials and Devices,Gordon and Breach Science Publishers, 1997, Chap 1. 69. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 9. 70. J. Yang and J. Shen, Doping effects in organic electroluminescent devices, Journal of Applied Physics, 1998, 84, 2105-2111. 71. Z. Liu, J. Pinto, J. Soares and E. Pereira, Efficient multilayer organic light emitting diode, Synthetic Metals, 2001, 122, 177-179. 72. C. D. Williams, R. O. Robles, M. Zhang, S. Li, R. H. Baughman and A. A. Zakhidov, Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes, Applied Physics Letters, 2008, 93, 183506. 73. D. H. Zhang, K. Ryu, X. L. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes, Nano Letters, 2006, 6, 1880-1886. 74. K. A. Higginson, X. M. Zhang and F. Papadimitrakopoulos, Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq(3)), Chemistry of Materials, 1998, 10, 1017-1020. 75. S. A. VanSlyke, C. H. Chen and C. W. Tang, Organic electroluminescent devices with improved stability, Applied Physics Letters, 1996, 69, 2160-2162. 76. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata and Z. H. Kafafi, Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules, Applied Physics Letters, 1999, 75, 766-768. 77. C. Giebeler, H. Antoniadis, D. D. C. Bradley and Y. Shirota, Influence of the hole transport layer on the performance of organic light-emitting diodes, Journal of Applied Physics, 1999, 85, 608-615. 78. A. J. Makinen, I. G. Hill, R. Shashidhar, N. Nikolov and Z. H. Kafafi, Hole injection barriers at polymer anode/small molecule interfaces, Applied Physics Letters, 2001, 79, 557-559. 79. R. J. McAvoy, H. W. Janes, Alternative production strategies for greenhouse tomatoes using supplemental lighting, Scientia horticulturae,1998, 35, 161-166. 80. M. Dorais, A. Gosselin, M. J. Trudel, Annual greenhouse tomato production under a sequential intercropping system using supplemental light, Scientia horticulturae, 1991, 45, 225-234. 81. C. S. Brown, A. C. Schuerger, J. C. Sager, Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting, Journal of the American Society for Horticultural Science, 1995,120, 808-813 82. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novičkovas and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, Journal of Physics D: Applied Physics, 2005, 38, 3182. 83. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novičkovas and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, Journal of Physics D: Applied Physics, 2005, 38, 3182. 84. R. Bula, R. Morrow, T. Tibbitts, D. Barta, R. Ignatius and T. Martin, Light-emitting diodes as a radiation source for plants, HortScience, 1991, 26, 203-205. 85. V. Fattori, J. Williams, L. Murphy, M. Cocchi and J. Kalinowski, Organic light sources look forward to optimize the photosynthesis process, Photonics and Nanostructures-Fundamentals and Applications, 2008, 6, 225-230. 86. D. Kumar, K. R. Justin Thomas, C. C. Lin, J. H. Jou, Pyrenoimidazole based blue emitting materials: Optical, electrochemical and electroluminescent characteristics, Chemistry – An Asian Journal, DOI:10.1002/asia.201300271, 2013. 87. C. H. Chien, F. M. Hsu, C. F. Shu, Y. Chi, Efficient red electrophosphorescence from a fluorene-based bipolar host material, Organic Electronics, 2009, 10, 871-876. 88. 王璽清, 碩士論文, 色溫可調變有機發光二極體之研製, 國立清華大學材料科學與工程研究所, 2010. 89. 陳正樺, 碩士論文, 使用發光染料作為共主體以改善有機發光二極體之效率滾降, 國立清華大學材料科學與工程研究所, 2013. 90. R. C. Morrow, LED Lighting in Horticulture, HortScience, 2008, 43, 1947-1950. 91. K. M. Folta, L. L. Koss, R. McMorrow, H. H. Kim, J. D. Kenitz, R. Wheeler et al., Design and fabrication of adjustable red-green-blue LED light arrays for plant research, BMC Plant Biology, 2005, 5, 17. 92. N. Yeh, J. P. Chung, High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation, Renewable & Sustainable Energy Reviews, 2009, 13, 2175-2180. 93. J. H. Jou, C. C. Lin, C. J. Li, S. H. Peng, F. C. Yang, K. R. Justin Thomas, D. Kumar, Y. Chi, B. D. Hsu, Plant growth absorption spectrum mimicking light sources. (投稿中) 94. B. A. Kamino, Y.-L. Chang, Z.-H. Lu and T. P. Bender, Phthalonitrile based fluorophores as fluorescent dopant emitters in deep-blue OLEDs: Approaching the NTSC standard for blue, Organic Electronics, 2012, 13, 1479-1485. 95. H. Park, J. Lee, I. Kang, H. Y. Chu, J.-I. Lee, S.-K. Kwon and Y.-H. Kim, Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency, Journal of Materials Chemistry, 2012, 22, 2695-2700. 96. I. Cho, S. H. Kim, J. H. Kim, S. Park and S. Y. Park, Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications, Journal of Materials Chemistry, 2012, 22, 123-129. 97. J. H. Seo, K. H. Lee, B. M. Seo, J. R. Koo, S. J. Moon, J. K. Park, S. S. Yoon and Y. K. Kim, High-efficiency deep-blue organic light-emitting diodes using dual-emitting layer, Organic Electronics, 2010, 11, 1605-1612. 98. J.-H. Jou, J.-R. Tseng, K.-Y. Tseng, W.-B. Wang, Y.-C. Jou, S.-M. Shen, Y.-L. Chen, W.-Y. Hung, S.-Z. Chen and T.-y. Ding, High-efficiency host free deep-blue organic light-emitting diode with double carrier regulating layers, Organic Electronics, 2012, 13, 2893–2897. 99. K. E. Linton, A. L. Fisher, C. Pearson, M. A. Fox, L.-O. Pålsson, M. R. Bryce and M. C. Petty, Colour tuning of blue electroluminescence using bipolar carbazole–oxadiazole molecules in single-active-layer organic light emitting devices (OLEDs), Journal of Materials Chemistry, 2012, 22, 11816-11825. 100. K. H. Lee, J. K. Park, J. H. Seo, S. W. Park, Y. S. Kim, Y. K. Kim and S. S. Yoon, Efficient deep-blue and white organic light-emitting diodes based on triphenylsilane-substituted anthracene derivatives, Journal of Materials Chemistry, 2011, 21, 13640-13648. 101. T. Zhang, D. Liu, Q. Wang, R. Wang, H. Ren and J. Li, Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps, Journal of Materials Chemistry, 2011, 21, 12969-12976. 102. Y.-H. Lee, T.-C. Wu, C.-W. Liaw, T.-C. Wen, T.-F. Guo and Y.-T. Wu, Benzo [k] fluoranthene-based linear acenes for efficient deep blue organic light-emitting devices, Journal of Materials Chemistry, 2012, 22, 11032-11038. 103. S. J. Lee, J. S. Park, K. J. Yoon, Y. I. Kim, S. H. Jin, S. K. Kang, Y. S. Gal, S. Kang, J. Y. Lee and J. W. Kang, High‐Efficiency Deep‐Blue Light‐Emitting Diodes Based on Phenylquinoline/Carbazole‐Based Compounds, Advanced Functional Materials, 2008, 18, 3922-3930. 104. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu and Y. Wang, Novel beryllium complex as the non-doped emitter for highly efficient deep-blue organic light-emitting diode, Organic Electronics, 2011, 12, 1914-1919. 105. Y. Park, C.-H. Seok, J.-H. Lee and J. Park, New blue emitting indenopyrazine derivatives for OLEDs: Improving the EL properties through substitution effects by using terphenyl side group, Synthetic Metals, 2010, 160, 845-848. 106. Z. Q. Gao, Z. H. Li, P. F. Xia, M. S. Wong, K. W. Cheah and C. H. Chen, Efficient Deep‐Blue Organic Light‐Emitting Diodes: Arylamine‐Substituted Oligofluorenes, Advanced Functional Materials, 2007, 17, 3194-3199. 107. S. Gong, Y. Zhao, M. Wang, C. Yang, C. Zhong, J. Qin and D. Ma, Versatile Benzimidazole/Triphenylamine Hybrids: Efficient Nondoped Deep-Blue Electroluminescence and Good Host Materials for Phosphorescent Emitters, Chemistry, an Asian journal, 2010, 5, 2093. 108. W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou and K.-T. Wong, A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow–green electrophosphorescence, and two-color-based white OLEDs, Journal of Materials Chemistry, 2010, 20, 10113-10119. 109. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen and Y. Y. Chien, Efficient Organic Blue‐Light‐Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties, Advanced Materials, 2004, 16, 61-65. 110. J.-H. Jou, Y.-P. Lin, M.-F. Hsu, M.-H. Wu and P. Lu, High efficiency deep-blue organic light-emitting diode with a blue dye in low-polarity host, Applied Physics Letters, 2008, 92, 193314-193313. 111. L. Wang, Y. Jiang, J. Luo, Y. Zhou, J. Zhou, J. Wang, J. Pei and Y. Cao, Highly Efficient and Color‐Stable Deep‐Blue Organic Light‐Emitting Diodes Based on a Solution‐Processible Dendrimer, Advanced Materials, 2009, 21, 4854-4858. 112. S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen and R. J. Jeng, Highly Efficient Carbazole‐π‐Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light‐Emitting Diodes, Advanced Materials, 2008, 20, 3947-3952.
|