帳號:guest(3.129.71.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林敬喬
作者(外文):Lin, Ching-Chiao
論文名稱(中文):擬植物成長吸收光譜光源
論文名稱(外文):Plant growth absorption spectrum mimicking light sources
指導教授(中文):周卓煇
口試委員(中文):蔡永誠
岑尚仁
陳建志
薛景中
周卓煇
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031503
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:有機發光二極體吸收光譜光合作用光譜
相關次數:
  • 推薦推薦:0
  • 點閱點閱:690
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
植物工廠可以在任何季節、任何地區產出無農藥以及無蟲害的新鮮蔬菜和水果,而逐漸引起廣大的重視;然而,現有的光源當中,如高壓鈉燈、白熾燈泡、螢光燈管和發光二極體,其所提供的光譜,皆與植物的吸收光譜,明顯地不匹配,這是因為植物的吸收光譜,在可見光的短、中、長區域,具有三個寬而非窄的吸收帶;因此,我們利用一個擬多寬帶光譜的固態照明技術,設計、製作植物成長光源。以有機發光二極體(Organic light emitting diode, OLED)為例,所得OLED元件之光譜,與光合作用光譜,有84%的相似性,而此乃緣自使用一個放光範圍,涵蓋短至中波長區域的雙波峰藍光染料,再搭配一個放光範圍,涵蓋中至長波長區域之波幅寬廣的單波峰紅光染料。若再摻雜一深紅光染料時,此一OLED植物成長光源的光合作用光譜相似性,可以再提升至90%。以一般的發光二極體(light emitting diode, LED)而言,若使用三個窄帶以取代原本單一窄帶的藍光,並額外加入兩個窄帶的紅光,則所得光合作用光譜相似性,也可提升至91%。此一擬多寬帶光譜技術,不僅可以使所提供的能量,被植物更完全的吸收利用,也可以用以設計一個更佳的光源,以符合各種不同的植物,在長根、莖、葉、果時之不同光源需求。
Plant factory has attracted increasing attention because it can produce at all weathers fresh fruits and vegetables free from pesticides. However, the emission spectra from the current light sources, including high pressure sodium lamps, incandescent bulbs, fluorescent tubes, and light emitting diodes (LEDs), significantly mismatches with the spectra absorbed by plants. We demonstrate in this communication a concept of using pseudo multiple broad-bands solid-state-lighting technologies to design plant-growth light sources. By taking organic light emitting diode for example, the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peaks blue dye, that emits from short- to mid-wavelength regions, and a diffused mono-peak red dye, that emits from mid- to long-wavelength regions, are employed. This organic LED based plant-growth light source can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the spectrum resemblance can be improved to 91% as the original one-narrow-band blue emission is replaced by a three-narrow-bands blue counterpart, and an additional two-narrow-bands red emission is incorporated. The present approach may facilitate either an ultimate use of the energy applied for plant growth and/or the design of a better light source for growing different plants.
摘要 II
Abstract III
誌謝 V
目錄 VIII
圖目錄 XI
表目錄 XIV
壹、緒論 1
貳、文獻回顧 4
2-1 有機發光二極體的歷史 4
2-2 有機發光二極體的發光原理 18
2-3 能量傳遞機制 26
2-4 出光效率 29
2-5 有機材料之發展 31
2-6 植物成長光源之發展 34
參、實驗方法 38
3-1 使用材料 38
3-1-1 材料之功能、全名及簡稱 39
3-1-2 本研究所使用有機材料之化學結構式 40
3-2 元件設計及製備 44
3-2-1 元件電路設計 44
3-2-2 ITO基材清潔 46
3-2-3 旋轉塗佈電洞傳輸層 47
3-2-4 濕式發光層之製備 47
3-2-5 蒸鍍裝置 49
3-2-6 蒸鍍速率之測定 49
3-2-7 乾式發光層及電子傳輸層之製備 51
3-2-8 無機層之製備 51
3-3 元件之量測及發光效率計算 52
肆、結果與討論 54
4-1 植物成長吸收光譜特性 54
4-2 光源之光合作用光譜相似度 56
4-3 現有光源與光合作用光譜的比較 57
4-4 擬植物成長吸收光譜OLED 59
4-4-1 擬光合作用光譜OLED 59
4-4-2 擬葉綠素a吸收光譜OLED 65
4-4-3 元件分析與探討 68
4-4-4 擬葉綠素b及類胡蘿蔔素吸收光譜OLED 71
4-4-5 深藍光OLED 73
4-5 擬光合作用光譜LED 76
伍、結論 78
陸、參考文獻 80
附錄、個人著作目錄 101
(A)期刊論文 101
(B)研討會論文 102
1. D. F. Austin, Water spinach (Ipomoea aquatica, Convolvulaceae) A food gone wild, Ethnobotany Research & Applications, 2007 5, 123-146.
2. M. A. Zeder, The Origins of Agriculture in the Near East, Current Anthropology, 2011, 52, 221-235.
3. M. A. Levinskikh, V. N. Sychev, T. A. Derendyaeva, O. B. Signalova, F. B. Salisbury, W. F Campbell et al., Analysis of the Spaceflight Effects on Growth and Development of Super Dwarf Wheat Grown on the Space Station Mir, Journal of Plant Physiology, 2000, 156, 522-529.
4. F. R. Dutcher, E. L. Hess, T. W. Halstead, Progress in Plant Research in Space, Advances in Space Research, 1994, 14, 159-171.
5. Y. Hari, C. L. Yang, E. Suryani, Maximizing Space Utilization in Plant Factory Through Crop Scheduling, Jurnal Sistem Informasi, 2012, 4, 201-206,.
6. Y. Hendrawan, B. D. Argo, M. B. Hermanto, S. Zhang, H. Murase, Development of a Fully Controlled Plant Factory for Moss Mat Production–Application of Intelligent Irrigation System, Robot Transporter, and Precision Artificial Lighting System.
7. J. Hataway, To Create Energy Efficient Vertical Farms, U. of Georgia Agronomist Focuses on Intelligent Light System, 2012, seedstock.com.
8. G. S. Singhal, G. Renger, S.K. Sopory, K-D. Irrgang, Govindjee, Concepts in photobiology: photosynthesis and photomorphogenesis, 1999, Springer.
9. K. J. McCree, Test of Current Definitions of Photosynthetically Active Radiation against Leaf Photosynthesis Data, Agricultural Meteorology, 1972, 10, 443-453.
10. R. A. Moss, W. E. Loomis, Absorption Spectra of Leaves .1. The Visible Spectrum, Plant Physiology, 1952, 27, 370-391.
11. N. R. Bulley, C. D. Nelson, E. B. Tregunna, Photosynthesis - Action Spectra for Leaves in Normal and Low Oxygen, Plant Physiology, 1969, 44, 678-684.
12. K. Luning, M. J. Dring, Action Spectra and Spectral Quantum Yield of Photosynthesis in Marine Macroalgae with Thin and Thick Thalli, Marine Biology, 1985, 87, 119-129.
13. R. G. Hurd, The Effect of an Incandescent Supplement on the Growth of Tomato Plants in Low Light, Ann Bot-London, 1974, 38, 613-623.
14. D. J. C. Friend, V. A. Helson, J. E. Fisher, The influence of the ratio of incandescent to fluorescent light on the flowering response of Marquis wheat grown under controlled conditions, Canadian Journal of Plant Science, 1961, 41, 418-427.
15. V. A. Helson, Comparison of Gro-Lux and Cool-White Fluorescent Lamps with and without Incandescent as Light Sources Used in Plant Growth Rooms for Growth and Development of Tomato Plants, Canadian Journal of Plant Science, 1965, 45, 461-466.
16. R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, T. S. Martin, Light-Emitting-Diodes as a Radiation Source for Plants, HortScience,1991, 26, 203-205.
17. M. E. Hoenecke, R. J. Bula, T. W. Tibbitts, Importance of Blue Photon Levels for Lettuce Seedlings Grown under Red-Light-Emitting Diodes, HortScience, 1992, 27, 427-430.
18. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi et al., Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes, Journal of the American Chemical Society, 2001, 123, 4304-4312.
19. R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu et al., Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes, Advanced Materials, 2011, 23, 2823-2827.
20. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa et al., Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, Journal of the American Chemical Society, 2003, 125, 12971-12979.
21. G. Zhou, C. L. Ho, W. Y. Wong, Q. Wang, D. Ma, L. Wang et al., Manipulating Charge-Transfer Character with Electron-Withdrawing Main-Group Moieties for the Color Tuning of Iridium Electrophosphors, Advanced Functional Materials, 2008, 18, 499-511.
22. C. H. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, R. Fröhlich et al., Deep-Blue-Emitting Heteroleptic Iridium(III) Complexes Suited for Highly Efficient Phosphorescent OLEDs, Chemistry of Materials, 2012, 24, 3684-3695.
23. H. K. Kim, S. H. Cho, J. R. Oh, Y. H. Lee, J. H. Lee, J. G. Lee et al., Deep blue, efficient, moderate microcavity organic light-emitting diodes, Organic Electronics, 2010, 11, 137-145.
24. J. Lee, N. Chopra, D. Bera, S. Maslov, S. H. Eom, Y. Zheng et al., Down-Conversion White Organic Light-Emitting Diodes Using Microcavity Structure, Advanced Energy Materials, 2011, 1, 174-178.
25. H. F. Wittmann, J. Grüner, R. H. Friend, G. W. C. Spencer, S. C. Moratti, A. B. Holmes, Microcavity Effect in a Single-Layer Polymer Light-Emitting Diode, Advanced Materials, 1995, 7, 541-544.
26. S. Han, C. Huang, Z. H. Lu, Color tunable metal-cavity organic light-emitting diodes with fullerene layer, Journal of Applied Physics, 2005, 97, 093102.
27. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, Weak microcavity effects in organic light-emitting devices, Physical Review B, 1998, 58, 3730-3740.
28. Z. Shen, P. E. Burrows, V. Bulović, S. R. Forrest, M. E. Thompson, Three-Color, Tunable, Organic Light-Emitting Devices, Science, 1997, 276, 2009-2011.
29. J. H. Jou, M. H. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen et al., Sunlight-style color-temperature tunable organic light-emitting diode, Applied Physics Letters, 2009, 95, 013307.
30. J. H. Jou, Y. L. Chen, J. R. Tseng, R. Z. Wu, J. J. Shyue, K. R. Justin Thomas et al., The use of a polarity matching and high-energy exciton generating host in fabricating efficient purplish-blue OLEDs from a sky-blue emitter, Journal of Materials Chemistry, 2012, 22, 15500-15506.
31. J. H. Jou, P. W. Chen, Y. L. Chen, Y. C. Jou, J. R. Tseng, R. Z. Wu et al., OLEDs with chromaticity tunable between dusk-hue and candle-light, Organic Electronics, 2013, 14, 47-54.
32. A. Bernanose, M. Comte and P. Vouaux, Sur Un Nouveau Mode Demission Lumineuse Chez Certains Composes Organiques, Journal De Chimie Physique Et De Physico-Chimie Biologique, 1953, 50, 64-68.
33. M. Pope, P. Magnante and H. P. Kallmann, Electroluminescence in Organic Crystals, Journal of Chemical Physics, 1963, 38, 2042-2043.
34. W. Helfrich and W. G. Schneide, Recombination Radiation in Anthracene Crystals, Physical Review Letters, 1965, 14, 229-231.
35. W. Helfrich and Schneide.Wg, Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene, Journal of Chemical Physics, 1966, 44, 2902.
36. P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Electrical-Conduction and Low-Voltage Blue Electro-Luminescence in Vacuum-Deposited Organic Films, Thin Solid Films, 1982, 94, 171-183.
37. C. W. Tang and S. A. Vanslyke, Organic Electroluminescent Diodes, Applied Physics Letters, 1987, 51, 913-915.
38. C. W. Tang, S. A. Vanslyke and C. H. Chen, Electroluminescence of Doped Organic Thin-Films, Journal of Applied Physics, 1989, 65, 3610-3616.
39. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Light-Emitting-Diodes Based on Conjugated Polymers, Nature, 1990, 347, 539-541.
40. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Flexible light-emitting diodes made from soluble conducting polymers, Nature, 1992, 357, 477-479.
41. J. Kido, M. Kohda, K. Okuyama and K. Nagai, Organic Electroluminescent Devices Based on Molecularly Doped Polymers, Applied Physics Letters, 1992, 61, 761-763.
42. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, White Light-Eittting Organic Electroluminescent Devices Using the Poly(N-vinylcarbazole) Emitter Layer Doped with 3 Fluorescent Dyes, Applied Physics Letters, 1994, 64, 815-817.
43. J. Kido, M. Kimura and K. Nagai, Multilayer White Light-Emitting Organic Electroluminescent Device, Science, 1995, 267, 1332-1334.
44. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami and K. Imai, Multilayered organic electroluminescent device using a novel starburst molecule, 4, 4’, 4’‐tris (3‐methylphenylphenylamino) triphenylamine, as a hole transport material, Applied Physics Letters, 1994, 65, 807-809.
45. S. Tokito, K. Noda and Y. Taga, Metal oxides as a hole-injecting layer for an organic electroluminescent device, Journal of Physics D-Applied Physics, 1996, 29, 2750-2753.
46. L. S. Hung, C. W. Tang and M. G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Applied Physics Letters, 1997, 70, 152-154.
47. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395, 151-154.
48. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, Journal of Applied Physics, 2001, 90, 5048-5051.
49. J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo, Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material, Applied Physics Letters, 1998, 73, 729-731.
50. J. Kido and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer, Applied Physics Letters, 1998, 73, 2866-2868.
51. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Y. Liu, Low-voltage organic electroluminescent devices using pin structures, Applied Physics Letters, 2002, 80, 139-141.
52. L. S. Liao, K. P. Klubek and C. W. Tang, High-efficiency tandem organic light-emitting diodes, Applied Physics Letters, 2004, 84, 167-169.
53. Y. Shao and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method, Applied Physics Letters, 2005, 86, 073510.
54. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source, Applied Physics Letters, 2006, 88, 193501.
55. Y. Sun and S. R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids, Nature Photonics, 2008, 2, 483-487.
56. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature, 2009, 459, 234-238.
57. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 2012, 492, 234-238.
58. J. H. Jou, C.Y. Hsieh, J.R. Tseng, S.H. Peng, Y.C Jou, J.H. Hong, S.M. Shen, M.C. Tang, P.C. Chen, C.H. Lin, Candle Light‐Style Organic Light‐Emitting Diodes, Advanced Functional Materials DOI:10.1002/adfm.201203209.
59. A. Dodabalapur, Organic light emitting diodes, Solid State Communications, 1997, 102, 259-267.
60. 吳柏賢, 碩士論文, 高效率橘紅光有機發光二極體元件之研製, 國立清華大學材料科學與工程研究所, 2012.
61. W. D. Gill, Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole, Journal of Applied Physics, 1972, 43, 5033-5040.
62. S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. F. Seidler and W. Riess, Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation, Physical Review B, 1999, 60, 8791-8797.
63. P. N. Murgatroyd, Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect, Journal of Physics D-Applied Physics, 1970, 3, 151.
64. 陳昱霖, 碩士論文,以天藍光染料製作高效率紫藍光有機發光二極體, 國立清華大學材料科學與工程研究所, 2012.
65. L. G. Thompson and S. E. Webber, External Heavy Atom Effect on Phosphorescence Spectra of Some Halonaphthalenes, Journal of Physical Chemistry, 1972, 76, 221-224.
66. T. Forster, *Zwischenmolekulare Energiewanderung Und Fluoreszenz, Annalen Der Physik, 1948, 2, 55-75.
67. D. L. Dexter, A Theory of Sensitized Luminescence in Solids, Journal of Chemical Physics, 1953, 21, 836-850
68. H. S. N. S. Miyata, Organic Electroluminescent Materials and Devices,Gordon and Breach Science Publishers, 1997, Chap 1.
69. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 9.
70. J. Yang and J. Shen, Doping effects in organic electroluminescent devices, Journal of Applied Physics, 1998, 84, 2105-2111.
71. Z. Liu, J. Pinto, J. Soares and E. Pereira, Efficient multilayer organic light emitting diode, Synthetic Metals, 2001, 122, 177-179.
72. C. D. Williams, R. O. Robles, M. Zhang, S. Li, R. H. Baughman and A. A. Zakhidov, Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes, Applied Physics Letters, 2008, 93, 183506.
73. D. H. Zhang, K. Ryu, X. L. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes, Nano Letters, 2006, 6, 1880-1886.
74. K. A. Higginson, X. M. Zhang and F. Papadimitrakopoulos, Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq(3)), Chemistry of Materials, 1998, 10, 1017-1020.
75. S. A. VanSlyke, C. H. Chen and C. W. Tang, Organic electroluminescent devices with improved stability, Applied Physics Letters, 1996, 69, 2160-2162.
76. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata and Z. H. Kafafi, Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules, Applied Physics Letters, 1999, 75, 766-768.
77. C. Giebeler, H. Antoniadis, D. D. C. Bradley and Y. Shirota, Influence of the hole transport layer on the performance of organic light-emitting diodes, Journal of Applied Physics, 1999, 85, 608-615.
78. A. J. Makinen, I. G. Hill, R. Shashidhar, N. Nikolov and Z. H. Kafafi, Hole injection barriers at polymer anode/small molecule interfaces, Applied Physics Letters, 2001, 79, 557-559.
79. R. J. McAvoy, H. W. Janes, Alternative production strategies for greenhouse tomatoes using supplemental lighting, Scientia horticulturae,1998, 35, 161-166.
80. M. Dorais, A. Gosselin, M. J. Trudel, Annual greenhouse tomato production under a sequential intercropping system using supplemental light, Scientia horticulturae, 1991, 45, 225-234.
81. C. S. Brown, A. C. Schuerger, J. C. Sager, Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting, Journal of the American Society for Horticultural Science, 1995,120, 808-813
82. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novičkovas and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, Journal of Physics D: Applied Physics, 2005, 38, 3182.
83. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novičkovas and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, Journal of Physics D: Applied Physics, 2005, 38, 3182.
84. R. Bula, R. Morrow, T. Tibbitts, D. Barta, R. Ignatius and T. Martin, Light-emitting diodes as a radiation source for plants, HortScience, 1991, 26, 203-205.
85. V. Fattori, J. Williams, L. Murphy, M. Cocchi and J. Kalinowski, Organic light sources look forward to optimize the photosynthesis process, Photonics and Nanostructures-Fundamentals and Applications, 2008, 6, 225-230.
86. D. Kumar, K. R. Justin Thomas, C. C. Lin, J. H. Jou, Pyrenoimidazole based blue emitting materials: Optical, electrochemical and electroluminescent characteristics, Chemistry – An Asian Journal, DOI:10.1002/asia.201300271, 2013.
87. C. H. Chien, F. M. Hsu, C. F. Shu, Y. Chi, Efficient red electrophosphorescence from a fluorene-based bipolar host material, Organic Electronics, 2009, 10, 871-876.
88. 王璽清, 碩士論文, 色溫可調變有機發光二極體之研製, 國立清華大學材料科學與工程研究所, 2010.
89. 陳正樺, 碩士論文, 使用發光染料作為共主體以改善有機發光二極體之效率滾降, 國立清華大學材料科學與工程研究所, 2013.
90. R. C. Morrow, LED Lighting in Horticulture, HortScience, 2008, 43, 1947-1950.
91. K. M. Folta, L. L. Koss, R. McMorrow, H. H. Kim, J. D. Kenitz, R. Wheeler et al., Design and fabrication of adjustable red-green-blue LED light arrays for plant research, BMC Plant Biology, 2005, 5, 17.
92. N. Yeh, J. P. Chung, High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation, Renewable & Sustainable Energy Reviews, 2009, 13, 2175-2180.
93. J. H. Jou, C. C. Lin, C. J. Li, S. H. Peng, F. C. Yang, K. R. Justin Thomas, D. Kumar, Y. Chi, B. D. Hsu, Plant growth absorption spectrum mimicking light sources. (投稿中)
94. B. A. Kamino, Y.-L. Chang, Z.-H. Lu and T. P. Bender, Phthalonitrile based fluorophores as fluorescent dopant emitters in deep-blue OLEDs: Approaching the NTSC standard for blue, Organic Electronics, 2012, 13, 1479-1485.
95. H. Park, J. Lee, I. Kang, H. Y. Chu, J.-I. Lee, S.-K. Kwon and Y.-H. Kim, Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency, Journal of Materials Chemistry, 2012, 22, 2695-2700.
96. I. Cho, S. H. Kim, J. H. Kim, S. Park and S. Y. Park, Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications, Journal of Materials Chemistry, 2012, 22, 123-129.
97. J. H. Seo, K. H. Lee, B. M. Seo, J. R. Koo, S. J. Moon, J. K. Park, S. S. Yoon and Y. K. Kim, High-efficiency deep-blue organic light-emitting diodes using dual-emitting layer, Organic Electronics, 2010, 11, 1605-1612.
98. J.-H. Jou, J.-R. Tseng, K.-Y. Tseng, W.-B. Wang, Y.-C. Jou, S.-M. Shen, Y.-L. Chen, W.-Y. Hung, S.-Z. Chen and T.-y. Ding, High-efficiency host free deep-blue organic light-emitting diode with double carrier regulating layers, Organic Electronics, 2012, 13, 2893–2897.
99. K. E. Linton, A. L. Fisher, C. Pearson, M. A. Fox, L.-O. Pålsson, M. R. Bryce and M. C. Petty, Colour tuning of blue electroluminescence using bipolar carbazole–oxadiazole molecules in single-active-layer organic light emitting devices (OLEDs), Journal of Materials Chemistry, 2012, 22, 11816-11825.
100. K. H. Lee, J. K. Park, J. H. Seo, S. W. Park, Y. S. Kim, Y. K. Kim and S. S. Yoon, Efficient deep-blue and white organic light-emitting diodes based on triphenylsilane-substituted anthracene derivatives, Journal of Materials Chemistry, 2011, 21, 13640-13648.
101. T. Zhang, D. Liu, Q. Wang, R. Wang, H. Ren and J. Li, Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps, Journal of Materials Chemistry, 2011, 21, 12969-12976.
102. Y.-H. Lee, T.-C. Wu, C.-W. Liaw, T.-C. Wen, T.-F. Guo and Y.-T. Wu, Benzo [k] fluoranthene-based linear acenes for efficient deep blue organic light-emitting devices, Journal of Materials Chemistry, 2012, 22, 11032-11038.
103. S. J. Lee, J. S. Park, K. J. Yoon, Y. I. Kim, S. H. Jin, S. K. Kang, Y. S. Gal, S. Kang, J. Y. Lee and J. W. Kang, High‐Efficiency Deep‐Blue Light‐Emitting Diodes Based on Phenylquinoline/Carbazole‐Based Compounds, Advanced Functional Materials, 2008, 18, 3922-3930.
104. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu and Y. Wang, Novel beryllium complex as the non-doped emitter for highly efficient deep-blue organic light-emitting diode, Organic Electronics, 2011, 12, 1914-1919.
105. Y. Park, C.-H. Seok, J.-H. Lee and J. Park, New blue emitting indenopyrazine derivatives for OLEDs: Improving the EL properties through substitution effects by using terphenyl side group, Synthetic Metals, 2010, 160, 845-848.
106. Z. Q. Gao, Z. H. Li, P. F. Xia, M. S. Wong, K. W. Cheah and C. H. Chen, Efficient Deep‐Blue Organic Light‐Emitting Diodes: Arylamine‐Substituted Oligofluorenes, Advanced Functional Materials, 2007, 17, 3194-3199.
107. S. Gong, Y. Zhao, M. Wang, C. Yang, C. Zhong, J. Qin and D. Ma, Versatile Benzimidazole/Triphenylamine Hybrids: Efficient Nondoped Deep-Blue Electroluminescence and Good Host Materials for Phosphorescent Emitters, Chemistry, an Asian journal, 2010, 5, 2093.
108. W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou and K.-T. Wong, A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow–green electrophosphorescence, and two-color-based white OLEDs, Journal of Materials Chemistry, 2010, 20, 10113-10119.
109. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen and Y. Y. Chien, Efficient Organic Blue‐Light‐Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties, Advanced Materials, 2004, 16, 61-65.
110. J.-H. Jou, Y.-P. Lin, M.-F. Hsu, M.-H. Wu and P. Lu, High efficiency deep-blue organic light-emitting diode with a blue dye in low-polarity host, Applied Physics Letters, 2008, 92, 193314-193313.
111. L. Wang, Y. Jiang, J. Luo, Y. Zhou, J. Zhou, J. Wang, J. Pei and Y. Cao, Highly Efficient and Color‐Stable Deep‐Blue Organic Light‐Emitting Diodes Based on a Solution‐Processible Dendrimer, Advanced Materials, 2009, 21, 4854-4858.
112. S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen and R. J. Jeng, Highly Efficient Carbazole‐π‐Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light‐Emitting Diodes, Advanced Materials, 2008, 20, 3947-3952.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *