帳號:guest(3.145.151.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馬敖藍
作者(外文):Orlando Jesus Marin Artavia
論文名稱(中文):Nanofilm Instability Induced by Solvent Vapor of Polystyrene Doped with the Conjugated Polymer MEH-PPV: the Competition of Phase Separation and Dewetting
指導教授(中文):楊長謀
指導教授(外文):Yang, C.M.
口試委員(中文):黃華宗
歐陽浩
口試委員(外文):Whang, Wha-Tzong
Ouyang, Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031421
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:144
中文關鍵詞:不穩定相分離MEH-PPV聚苯乙烯去濕
外文關鍵詞:InstabilityPhase separationMEH-PPVPolystyreneDewetting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:121
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
Nanothin films of polystyrene (PS) doped with poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) by spin-coating were researched. An Interplay between phase separation and dewetting caused by the inhibition of formation of holes with increasing concentration of MEH-PPV in polystyrene was observed in the early stages of instability. With increasing concentration of MEH-PPV, the morphology is dominated by this interplay. For low concentrations of 5%-MEH-PPV, dewetting by nucleation and growth was found as evidenced by the formation of holes with rim instability, after increasing the concentration to 15%-MEH-PPV, there was no formation of holes but rather the appearance of composition waves and later formation of droplets; with a higher concentration of 30%-MEH-PPV the surface morphology evidenced the formation of composition waves rather than the formation of holes. Under the same film thickness, composition waves are induced with increasing concentration of MEH-PPV. A short-time stepwise annealing experiment exposed the evolution of the morphological features. A residual layer measured on scratched samples by the AFM was found to be thicker for a larger concentration of MEH-PPV. The effect of film thickness was analyzed for films of 5, 10, 20 and 30 nm revealing that increasing film thickness benefits the formation of the composition waves as evidenced by the early rising of the bicontinuous pattern. For concentrations of 15%-MEH-PPV and above, The PL enhancement factor was found to decrease with film thickness revealing that the PL enhancement decreases progressively with increasing film thickness as the films move from higher instability to the formation of the composition waves. The solvent effect showed that acetone usually had a different path of instability than toluene.
Acknowledgements
Abstract……………………………………………………………………………………………………………………..I
Table of contents……………………………………………………………………………………………………...II
List of figures……………………………………………………………………………………………………………VI
List of tables…………………………………………………………………………………………………………..XIV
Chapter 1 Introduction………………………………………………………………………………………………1
Chapter 2 Literature review………………………………………………………………………………………3
2.1 Introduction…………………………………………………………………………………………………...3
2.2 Polymer thin films……………………………………………………………………………………………4
2.2.1 Spontaneous instability………………………………………………………………………………..4
2.3 Phase separation…………………………………………………………………………………………….5
2.4 Viscoelasticity………………………………………………………………………………………………….7
2.5 Hetero-junction quenching effect……………………………………………………………………8
2.6 Theory of dewetting………………………………………………………………………………………..8
2.6.1 Holes in the film…………………………………………………………………………………………10
2.6.2 Shape of the rim………………………………………………………………………………………...11
2.6.2.1 Ribbon formation…………………………………………………………………………………….12
2.6.2.2 Rim instability………………………………………………………………………………………….12
2.7 Hamaker constant………………………………………………………………………………………….12
2.8 Spinodal instability………………………………………………………………………………………..13
2.9 Spinodal decomposition………………………………………………………………………………..16
2.10 Polymer blends……………………………………………………………………………………………18
2.11 MEH-PPV…………………………………………………………………………………………………….19
Chapter 3 Experimental procedure………………………………………………………………………….20
3.1 Solvent vapor annealing………………………………………………………………………………..20
3.1.1 Materials…………………………………………………………………………………………………….20
3.2 Instruments…………………………………………………………………………………………………..23
3.2.1 The vacuum chamber…………………………………………………………………………………23
3.2.2 The spin-coater…………………………………………………………………………………………..24
3.2.2 The furnaces……………………………………………………………………………………………….26
3.2.4 Perkin Elmer spectrometer…………………………………………………………………………27
3.2.5 Atomic Force Microscope (AFM)…………………………………………………………………28
3.2.6 Fourier Transform Infrared (FTIR)……………………………………………………………….32
3.3 Sample preparation……………………………………………………………………………………….33
3.4 Experimental procedure and steps………………………………………………………………..34
Flow chart……………………………………………………………………………………………………………37
Chapter 4 Results and discussion…………………………………………………………………………….46
4.1 Overview……………………………………………………………………………………………………….46
4.2 Introduction………………………………………………………………………………………………….47
4.3 Dequenching………………………………………………………………………………………………...48
4.4 The interplay between phase separation and dewetting……………………………….52
4.4.1 The interplay as evidenced in the surface morphology…………………………..55
4.4.2 Confocal PL mapping………………………………………………………………………………66
4.5 Effect of the film thickness…………………………………………………………………………….74
4.5.1 Effect of the film thickness on low concentration of MEH-PPV (5%-MEH-PPV/PS)………………………………………………………………………………….74
4.5.2 Effect of film the thickness on middle concentration of MEH-PPV (15%-MEH-PPV/PS)………………………………………………………………………………..81
4.5.2.1 Effect of the film thickness on middle concentration of MEH-PPV (15%-MEH-PPV/PS)…………………………………………..……………………………………87
4.5.3 Effect of the film thickness on high concentration of MEH-PPV (30%-MEH-PPV/PS)………………………………………………………………………………93
4.6 Effect of a good solvent and a poor solvent on middle and high concentrations of MEH-PPV…………………………………………………………………….………………………..98
4.6.1 Effect of a good and a poor solvent on middle concentration of MEH-PPV (15%-MEH-PPV/PS)………………………………………………………………………………..97
4.6.2 Effect of a good and solvent and a poor solvent on high concentration of MEH-PPV (30%-MEH-PPV/PS)………………………………………………………………107
4.7 Effect of the switching of the solvents…………………………………………………………115
4.8 Effect of the film subjected to the in-and-out (interrupted) of the solvent vapor bath compared to the uninterrupted exposure to the solvent vapor bath……........................................................................................................127
4.9 Fourier Transform Infrared Spectrometer data…………………………………………….135
Chapter 5 Conclusions………………………………………………………………………………………………137
Chapter 6 References………………………………………………………………………………………………..139


1-Jacobs, K.; Herminghaus, S., Langmuir, 1998, 14, 965-969.
2-Karim, A.; Douglas, J.F.; Sung, L.P.; Ermi, D.B., Encyclopedia of Materials: Science and Technology, 2001, 8319-8322.
3-Arnatov, S.A.; Nechvolodova, S.A.; Bakulin, A.A.; Elizarov, S.G.; Khodarev, A.N.; Martyanov, D.S.; Parashuk, D.Y., Synthetic Metals, 147,2004, 287–291.
4-Thompson, R.L.; McDonald, M.T.; Lenthall, J.T.; Hutching, L.R., Macromolecules, 2005, 38, 4339-4344.
5-Lee, W.H.; Kim, K.S.; Yang, G. M.; Hong, C.H.; Lim, K.Y.; Suh, E.Y.; Lee, H.J., J. Korean Phys. Soc., 2001, 39, 136-140.
6-Park, J.H.; Kim, J.S.; Lee, J.H.; Lee, W.H.; Cho, K., J. Phys. Chem. C, 2009, 113, 17579–17584.
7-Fu, Y.; Lakowicz, J., Nature, 2011, 472, 178-179.
8-Xu, L.; Shi, T.F.; An, L.J., Langmuir, 2007, 23, 9282-9286.
9-Reiter, G.; Sharma, A.; Casoli, A.; David, M.A.; Khanna R.; Philippe, A., Langmuir, 1999, 15, 2551-2558, 1999.
10-Ruderer, M.A.; Metwalli, E.; Wang, W.N.; Kaune, G.; Roth, S.V.; Müller-Buschbaum, P., J. Chem. Phys., 2009, 10, 664 – 671.
11-Oron, A.; Davis, S.H.; Bankoff, G.S., Rev. Modern Phys., 1997, 69, 3, 931-980.
12-Vrij, A., Discussions of the Faraday Society, 44, 1966, 23-33.
13-Reiter, G.; Sharma, A., J. Colloid & Interface SCI., 1996,178, 383–399.
14-Nishi, T.; Wang, T.T.; Kwei, T.K., Macromolecules, 1975, 8, 2, 227-234.
15-Breeze, A.J.; Schlesinger, Z.; Carter, S.A., Phys. Rev. B, 2001, 64, 125205.
16-Roger F. Loring, R.F.; Andersen, H.C.; Fayer, M.D., J. Chem. Phys., 1982, 76, 2015-2017
17-Batchelor, G.K., J. Fluid Mech., 1976, 74, part 1, 1-29.
18-Sagui, C.; Grant, M., Phys. Rev. E, 1999, 59, 4, 4175-4187.
19-Zhang, F.L.; Mammo, W.; Andersson, L.M.; Admasie, S.; Mats R. Andersson, M.R.; Inganäs, O., Adv. Mater., 2006, 18, 2169–2173.
20-Karim, A.; Douglas, J.F.; Lee, B.P.; Glotzer, S.C.; Rogers, J.A.; Jackman, R.J.; Amis, E.J.; Whitesides, G.M., Phys. Rev. E, 1998, 57, 6, R6273-6.
21-Roger F. Loring, R.F.; Andersen, H.C.; Fayer, M.D., J. Chem. Phys., 1982, 76, 2015-2017.
22-Sferrazza, M.; Heppenstall-Butler, M.; Cubitt, M.R.; Bucknall, D.; Webster, J.; Jones, R.A.L. Phys. Rev. Lett., 1998, 81, 23
23-Heier, J.; Castro, F.A.; Nüesch, F.; Hany, R.; Org. Photovoltaics VIII, 2007, Proc. of SPIE Vol. 6656 66560P-1.
24-Chou, L.H.; Hsu, S.Y.; Wei, P.K., Polymer, 2005, 46, 4967–4970.
25-Mokarian-Tabari, P.; M. Geoghegan, M.; Howse, J.R.; Heriot, S.Y.; Thompson, R.L.; Jones, R.A.L., Eur. Phys. J. E, 2010, 33, 283–289.
26-Castro, F.A.; Graeff, C.F.O.; Heier, J.; Hany, R., Polymer, 2007, 48, 2380-2386.
27-Wu, S.H., Polymer Interface and Adhesion, 1982, CRC Press, 1st Ed.
28-Li, X.; Han, Y.C.; An, L.J., Polymer, 2003, 44, 5833–5841.
29-Lai, A.; Bremond, N.; Stone, H.A., J. Fluid Mech., 2009, 632, 97–107. Droplets.
30-Shi, Y.; Liu, J.; Yang, Y., J. Appl. Phys., 2000, 87, 9, 4254-4263.
31-Gabriele, S.; Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Vilmnon, T.; Raphael, Deprez, S.; Coppee, S.; Al Akhrass, S.; Vilmin, T., J. Pol. Sci.: Part B: Pol. Phys., 2006, 44, 3022–3030 .
32-Barnes, K.A.; Douglas, J.F.; Liu, D.W.; Karim, A., Adv. Colloid & Interface Sci., 2001, 94, 1 – 3, 83 – 104.
33-Gonzalez-Rabade, A.; Mortenai, A.C.; Friend, R.H., Adv. Mater., 2009, 21, 3924–3927.
34-Schwatz, L.W.; Valery Roy, R.; Eley, R.R.; Petrash, S., J. Colloid & Interface Sci., 2001, 234, 363–374.
35-Reiter, G., Phys. Rev. Lett., 1992, 68, 1, 75-78.
36-Xing, R.B.; Lio, C.X.; Wang, Z.; Han, Z.Y., Polymer, 2007, 48, 3574-3583.
37-Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmnon, T.; Raphael, E., Nature Materials, 2005, 4.
38-Al Akhrass, S.; Ostaci, R.V.; Grohens, Y.; Drockenmuller, E.; Reiter, G., Langmuir 2008, 24, 1884-1890.
39-Xu, L.; Reiter, G.; Shi, T.F.; An, L.J., Langmuir, 2010, 26, 10, 7270–7276.
40-Mecke, R.K.; Jacobs, K.; Herminghaus. S., Langmuir, 1998, 14, 965-969.
41-Derjaguin, B.V.; Abrikosova, I.I.; Lifshitz, E.M., Quarterly Reviews, 1956.
42-Thennadil, S.N.; Garcia-Rubio, L.H., J. Colloid & Interface Sci., 2001, 243, 136-142.
43-Lifshitz, E.M., J Exp. Theor. Phys., 1955, 29, 94.
44-Lifshitz, E.M., Soviet Phys., 1956, 2, 1, 73-83.
45-Hamaker H.C., Physica, 1937, 10.
46-French, R.H., Solid State Ionics, 75, 13-33, 1995.
47-Drummond C.H., Langmuir, 1997, 13, 3890-3895.
48-Van Oss, C.J., J. Appl. Phys., 1981, 52, 2.
49-Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F., 1992, SCI., 258, 27, 1474-1476.
50-Ayse Turak (2013). Dewetting Stability of ITO Surfaces in Organic Optoelectronic Devices, Optoelectronics - Advanced Materials and Devices, Prof. Sergei Pyshkin (Ed.).
51-Xie, R.; Karim, A.; Douglas, J.F.; Han, C.C.; Weiss, R.A., Phys. Rev. Lett, 1998, 81, 6, 1251-1255.
52-Siggia, E., Phys. Rev. A., 1979, 20, 2, 595-606.
53-Thiele, U.; Velarde, M.G.; Neuffer, K., Phys. Rev. Lett., 2001, 87, 1, 016104-1-4.
54-Swalin, R.A., Thermodynamics of Solids, 1972, John Wiley & sons, 2nd Ed.
55-Tekin, E.; Holder, E.; Kozodaev, D., Schubert, U., Adv. Func. Mat., 2007, 17, 277–284.
56-Wang, D.P.; Yuan, Y.; Mardiyati, Y.; Bubeck, C.; Koynov, K., Macromolecules, 2013, 46, 15,6217–6224.
57-Brandrup J., Polym. Handbook, 3rd edition, 1989.
58-Koenhen, D.M.; Smolders, A., J. App. Pol. Sci., 1975, 19, 1163-1179.
59-Lee, S.H.; Yoo, P.J.; Kwon, S.J.; Hong H. Lee, H.H., J. Chem. Phys., 121, 4346, 2004.
60-Heriot, S.Y.; Jones, R.L., 2005, Nature Materials, 4.
61-Szymanski, C.; Wu, C.F.; Hooper, J.; Salazar, M.A.; Perdomo, A.; Dukes, A.; McNeill, J., J. Phys. Chem. B., 2005, 109, 8543-8546.
62-Cossiello, R.F.; Susman, M.D.; Aramendía, P.F.; Atvars, T.D.Z., J. Luminescence, 2010, 130, 415–423.
63-Ton-That, C.; R. Phillips, M.R.; Nguyen, T.P., J. Luminescence, 2008, 128, 2031–2034.
64-Müller-Buschbaum, P., O’Neill, S.A.; Affrossman, S.; Stamm, M., Macromolecules, 1998, 31, 5003-5009.
65-Ma, K.X.; Ho, C.H.; Zhu, F.R.; Chung, T.S., Thin Solid Films, 2000, 371, 140-147.
66-Wu. S., J Poly Sci., 1971, C34, 19.
67-Müller-Buschbaum, P.; Gutmann, J.S.; Stamm, M., Macromolecules, 2000, 33, 4886-4895.
68-Xu, L.; Sharma, A.; Joo, S.W., Macromolecules, 2012, 45, 6628−6633.
69-He, G.F.; Li, Y.F.; Liu, J.; Yang, Y., App. Phys. Lett., 2002, 80, 22, 4247-4249.
70-Zhu, J.T; Zhao, J.C.; Liao, Y.G.; Jiang, W., J. Pol. Sci.: B: Pol. Phys., 2005, 43, 2874–2884.
71-Müller-Bunschbaum, P.; Bauer, P.; Wunnicke, O.; Stamm, M., J. Phys.: Condens. Matter, 2005, 17, S363–S38.
72-Seemann, R.; Herminghaus, S.; Jacobs, K., J. Phys.: Condens. Matter, 2001, 13, 4925–493.
73-Seeman, R.; Herminghaus, S.; Jacobs, K., Phys. Rev. Lett., 2001, 86, 24, 5534-5537.
74-Marletta, A., Gonsalves, V.; T. Balogh, D.T., Braz. J. Phys., 2004, 34, 2B, 697-698.
75-Israelivich., Intermolecular and Surface Forces, 3rd Ed., Chap. 13, 2011.
76-Granström, M.; Inganäs, O., Appl. Phys. Lett., 1996, 68, 2, 147-149.
77-Chang, M.Y.; Yen, H.B.; Hung, C.Y.; Chen, Y.F.; Lin, S.C.; Huang, W.Y.; Han, Y.K., J. Electrochem. Soc., 2010, 157, 4, J116-J119.
78-Olson, L.G.; Lo, Y.S.; Beebe, T.P.; M. Harris, J.M., Anal. Chem. 2001, 73, 4268-4276. A
79-Nowicki, B., Wear, 1985, 102, 161 – 176. b
80-Sung, L.; Karim, A.; Douglas, J.F.; Han, C.C., Phys. Rev. Lett, 1996, 76, 4368. C
81-Xue, L.J.; Han, Y.C., Langmuir, 2009, 25, 9, 5135–5140.
82-Vial, J.; Carr. A., INT.J. Adhesion & Adhesives, 1991, 11, 3.
83-Changsarn, S.; Mendez, J.D.; Weder, C.; Toemsak Srikhirin, T.; Supaphol, P., Chiang Mai J. Sci., 2011, 38, 2, 193-209.
84-Lefèvre, G.; Jolivet, A., Proc. Int. Conference on Heat Exchanger Fouling and Cleaning VIII, 2009.
85-Butt, H.J.; Graff, K.; Kappl, M., Physics and Chemistry of Interfaces, 2006, Wiley-VCH Verlag & Co. KGaA
86-Van Oss, C.J., Interfacial forces in aqueous media, 2006, CRC Taylor & Francis Group, 2nd Ed.
87-French, R.H.; Cannon, R.M.; DeNoyer, L.K.; Chiang, Y.M., Solid State Ionics, 1996, 75, 13-33.
88-Saunders, B.R.; Turner, M.L., Advances in Colloid and Interface Science, 2008, 138, 1–23.
89-Chou, H.L.; Lin, K.F.; Wang, D.C., J. Pol. Res., 2006, 13, 79–84.
90-You, J.C.; Liao, Y.G.; Men, Y.F.; Shi, T.F.; An, L.J., Langmuir, 2010, 26, 18, 14530–14534.
91-Kim, C.G.; Koo, M.S.; Choi, S.H.; Lee, D.H.; Park, D.K., Bull. Korean Chem. Soc., 2012, 33, 9, 3087-3090.
92-Reiter, G.; Napolitano, S., J. Pol. Sci.: B: Poly. Phys., 2010, 48, 2544–2547.
93-Yao, Y.; Hou, J.H.; Xu, Z.; Li, G.; Yang, Y.; Adv. Funct. Mater. 2008, 18, 1783–1789.
94-Zhu, M.; Cui, T.H.; Varahramyan, K., Microelectronic Engineering, 2004, 75, 269–274.
95-Utraki, L.A; Jamieson, A.M., Polymer Physics, from suspensions to nanocomposites and beyond, 2010, John Wiley & Sons, Inc. Publications, 1st Ed.
96-Wang. H.; Composto, R., J. Chem. Phys., 2000, 113, 10386.
97-Faleiros, M.M.; Miranda, P.B., Synthetic Materials, 2010, 160, 2409-2412.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *