帳號:guest(3.128.204.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭家康
作者(外文):Cheang, Jia-Kang
論文名稱(中文):利用金屬輔助化學蝕刻配合田口數值分析製造高深寬比之矽微米洞狀結構
論文名稱(外文):Fabricating High Aspect Ratio Silicon Micro-Holes Implemented by Metal-Assisted Chemical Etching with Taguchi Analysis
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):李紫原
蕭桂森
口試委員(外文):Lee, Chi-Young
Hsiao, Kuei-Sen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031402
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:63
中文關鍵詞:高深寬比矽穿孔結構金屬輔助化學蝕刻田口方法
外文關鍵詞:high aspect ratiothrough silicon viametal-assisted chemical etchingTaguchi method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:34
  • 收藏收藏:0
高深寬比矽晶結構在半導體產業扮演著重要的角色。隨著時代的變遷與科技的進步,晶片的發展趨向微小化、多功能化。因此,對於製造微米、奈米尺寸高深寬比矽晶結構的技術與需求不斷提升。目前,市面上已被廣泛用來製造該結構的方法為深反應性離子蝕刻(Deep reactive-ion-etching,DRIE)。然而,此製造方法需要複雜的設備裝置及瑣碎的製程過程,因此,所需成本昂貴。因此,我們想利用相對製程簡單、成本低廉的蝕刻方法—金屬輔助化學蝕刻 (Metal-assisted-chemical-etching,MACE)來製造相同的結構。金屬輔助化學蝕刻能夠在室溫環境下於矽晶片上朝<100>方向蝕刻,此蝕刻反應過程簡單,且只需用到一般的化學反應槽及簡單的化學溶液。本論文的研究目的就是想利用金屬輔助化學蝕刻透過田口分析與變異數分析的優化處理,得出蝕刻的最佳條件;然後,透過濕式爐管氧化與高濃度氫氟酸處理,將MACE後殘留的矽線移除乾淨。最終,希望得到能與DRIE製程結果媲美的高深寬比矽微米孔洞結構。
根據本研究結果顯示,深寬比約13,邊長為四微米的方形陣列矽晶結構已成功的被製造出來。同時,在優化條件下的MACE蝕刻速率每秒可達三微米。然後,本研究結果也呈現了一個新穎並具備高生產效能的方法來製造高深寬比矽晶微結構。除此之外,我們也相信本方法能夠被進一步改良而得到更高深寬比、結構更平滑的結果,如:增加氮化矽(SiNx)保護層的厚度、用更強的保護層取而代之、發掘能夠更好控制金屬催化劑分佈的方法與機制。
High aspect ratio (AR) Silicon base structure plays an important role in semiconductor industry. Recent advances in small size and multifunctional chip has made the increased demands of fabrication of micro and nano scale high AR silicon structure. However, the commercial fabricating method, deep reactive ion etching (DRIE) suffers from high cost and complex processing due to the high maintenance fees and complicated set up. In contrast, we investigate the ability of promising novel chemical etching, metal assisted chemical etching (MACE) that can etch Silicon (Si) wafer in <100> direction near room temperature and thus benefits from it’s simple and cost effective reaction process. In order to fabricate high AR silicon micro holes structure, we have optimized our MACE recipe by employing statistical Taguchi L9 method and ANOVA analysis. Subsequently, the post-MACE formed Si wires have been removed by furnace oxidation followed by Hydrofluoric acid (HF) treatment. Therefore, high AR Si micro holes structure with smooth surface is obtained.
Our results demonstrate that the AR value is up to 13 (for 4x4um square arrays in p-type (100) Si substrate), and the etching rate of optimal condition is about 3 µm/min. Moreover, an alternative method that possess larger throughput for fabricating high AR Si micro structure has been performed. Besides, it is believed that the AR value can be further improved by increasing the thickness of Si nitride layer (protection layer), using stronger protection layer instead, and exploring the method that can well-control the morphology of metal catalyst which strongly influence the post-etched structure.
摘要 II
Abstract III
誌謝 IV
Contents V
List of figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 High aspect ratio structure 1
1.1.1 High AR structures categories 2
1.2 Fabricating techniques 7
1.2.1 Patterning techniques 8
1.2.2 Etching techniques 13
1.2.3 Novel etching techniques – Metal-assisted chemical etching 22
1.3 Taguchi method 27
Chapter 2 Method 30
2.1 Photo-mask design and fabrication. 30
2.2 Sample preparation 30
2.2.1 Wafer clean 30
2.2.2 Depositing and patterning of Silicon nitride 31
2.3 Metal assisted chemical etching and Si wires removal 34
2.4 Taguchi method and Analysis of variance 35
Chapter 3 Results and discussion 38
3.1 SEM results after MACE with Taguchi L9 analysis 38
3.1.1 1st round Taguchi L9 SEM observation and Taguchi L9 analysis 38
3.1.2 2nd round Taguchi L9 SEM observation and Taguchi L9 analysis 40
3.2 SEM results of Si wire removal 45
3.2.1 Failed cases 45
3.2.2 Succeeded case (furnace oxidation and HF treatment) 52
3.3 Etching of pattern with different dimensions 54
3.4 Profile elucidation. 55
3.5 Further strategies to improve AR 56
3.6 Problems need to be explored and solved 56
Chapter 4 Conclusion 58
Reference 59
1. Wu, B., A. Kumar, and S. Pamarthy, High aspect ratio silicon etch: A review. Journal of Applied Physics, 2010. 108(5).
2. Liu, R.Y., et al., Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Research Letters, 2013. 8: p. 1-8.
3. Vasilache, D., et al., Through wafer via holes manufacturing by variable isotropy Deep RIE process for RF applications. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2012. 18(7-8): p. 1057-1063.
4. Zahedinejad, M., et al., Deep and vertical silicon bulk micromachining using metal assisted chemical etching. Journal of Micromechanics and Microengineering, 2013. 23(5).
5. Wang, D., et al., Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells. Nanoscale Research Letters, 2013. 8: p. 1-9.
6. Peng, K.Q., et al., Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Advanced Functional Materials, 2003. 13(2): p. 127-132.
7. Zhang, M.L., et al., Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Journal of Physical Chemistry C, 2008. 112(12): p. 4444-4450.
8. Kim, J., et al., Curved Silicon Nanowires with Ribbon-like Cross Sections by Metal-Assisted Chemical Etching. Acs Nano, 2011. 5(6): p. 5242-5248.
9. Motoyoshi, M., Through-Silicon Via (TSV). Proceedings of the Ieee, 2009. 97(1): p. 43-48.
10. Zhu, J., et al., Through-silicon via technologies for interconnects in RF MEMS. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2010. 16(7): p. 1045-1049.
11. Ayazi, F. and K. Najafi, High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology. Journal of Microelectromechanical Systems, 2000. 9(3): p. 288-294.
12. Lu, J.Q., 3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems. Proceedings of the Ieee, 2009. 97(1): p. 18-30.
13. Gagnard, X. and T. Mourier, Through silicon via: From the CMOS imager sensor wafer level package to the 3D integration. Microelectronic Engineering, 2010. 87(3): p. 470-476.
14. Kang, U., et al., 8 Gb 3-D DDR3 DRAM Using Through-Silicon-Via Technology. Ieee Journal of Solid-State Circuits, 2010. 45(1): p. 111-119.
15. Khan, N., et al., Development of 3-D Silicon Module With TSV for System in Packaging. Ieee Transactions on Components and Packaging Technologies, 2010. 33(1): p. 3-9.
16. Koyanagi, M., T. Fukushima, and T. Tanaka, High-Density Through Silicon Vias for 3-D LSIs. Proceedings of the Ieee, 2009. 97(1): p. 49-59.
17. Li, X.L., Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Current Opinion in Solid State & Materials Science, 2012. 16(2): p. 71-81.
18. Notten, P.H.L., et al., 3-D integrated all-solid-state rechargeable batteries. Advanced Materials, 2007. 19(24): p. 4564-4567.
19. Chang, C.L., et al., Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures. Journal of Micromechanics and Microengineering, 2005. 15(3): p. 580-585.
20. Laermer, F. and A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectronic Engineering, 2003. 67-8: p. 349-355.
21. Marty, F., et al., Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectronics Journal, 2005. 36(7): p. 673-677.
22. Huang, Z.P., et al., Metal-Assisted Chemical Etching of Silicon: A Review. Advanced Materials, 2011. 23(2): p. 285-308.
23. Hong, J., et al., Fabrication of vertically aligned Si nanowires on Si (100) substrates utilizing metal-assisted etching. Journal of Vacuum Science & Technology A, 2010. 28(4): p. 735-740.
24. Chen, H.A., et al., Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles. Nano Letters, 2010. 10(3): p. 864-868.
25. Taguchi, G., Quality Engineering (Taguchi Methods) for the Development of Electronic Circuit-Technology. Ieee Transactions on Reliability, 1995. 44(2): p. 225-229.
26. Beyer, H.G. and B. Sendhoff, Robust optimization - A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 2007. 196(33-34): p. 3190-3218.
27. Yang, W.H. and Y.S. Tarng, Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 1998. 84(1-3): p. 122-129.
28. Partnership, P.F., An Introduction to MEMS. 2002.
29. Hirobe, K., K.i. Kawamura, and K. Nojiri, Formation of deep holes in silicon by reactive ion etching. Journal of Vacuum Science & Technology B, 1987. 5(2): p. 594-600.
30. (SCME), S.C.f.M.E. History of MEMS. 2013.
31. (ITRS), I.t.r.f.s. International technology roadmap for semiconductor (ITRS) - MEMS. 2013.
32. Blauw, M.A., T. Zijlstra, and E. van der Drift, Balancing the etching and passivation in time-multiplexed deep dry etching of silicon. Journal of Vacuum Science & Technology B, 2001. 19(6): p. 2930-2934.
33. Illinois, E.M.I.U.o. Introduction to MEMS.
34. Franzon, P.D., et al. Design and CAD for 3D integrated circuits. in Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE. 2008.
35. Xu, Z. and J.Q. Lu, Through-Silicon-Via Fabrication Technologies, Passives Extraction, and Electrical Modeling for 3-D Integration/Packaging. Ieee Transactions on Semiconductor Manufacturing, 2013. 26(1): p. 23-34.
36. Rudack, A.C., Inspection and metrology for through-silicon vias and 3D integration, in Metrology, Inspection, and Process Control for Microlithography Xxvi, Pts 1 and 2, A. Starikov, Editor. 2012.
37. (ITRS), I.t.f.s. International technology for semiconductor (ITRS) - Metrology. 2013.
38. James A. Bondur, W.H.B.P., Hopewell Junction, both of N.Y., REACTIVE ION ETCI-IING METHOD FOR PRODUCING DEEP DIELECTRIC ISOLATION IN SILICON. 1979.
39. Hyun-Mog, P., et al., Etch profile control of high-aspect ratio deep submicrometer α-Si gate etch. Semiconductor Manufacturing, IEEE Transactions on, 2001. 14(3): p. 242-254.
40. Liao, W.-S. A high aspect ratio Si-fin FinFET fabricated with 193nm scanner photolithography and thermal oxide hard mask etching techniques. 2006.
41. Zhu, Y., et al., Fabrication of keyhole-free ultra-deep high-aspect-ratio isolation trench and its applications. Journal of Micromechanics and Microengineering, 2005. 15(3): p. 636-642.
42. Sammak, A., et al. Silicon nanowire fabrication using novel hydrogenation-assisted deep reactive ion etching. in Semiconductor Device Research Symposium, 2007 International. 2007.
43. Pimpin, A. and W. Srituravanich, Review on Micro- and Nanolithography Techniques and Their Applications. 2011. Vol. 16. 2011.
44. Qin, D., Y.N. Xia, and G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010. 5(3): p. 491-502.
45. Guo, L.J., Nanoimprint lithography: Methods and material requirements. Advanced Materials, 2007. 19(4): p. 495-513.
46. Darling, R.B. EE-527: MicroFabrication - Photolithography.
47. Avinash P. Nayak, L.V.a.M.S.I. Wet and dry etching.
48. Foll, H. and J. Carstensen, Pattern Formation during Anodic Etching of Semiconductors. Journal of the Electrochemical Society, 2011. 158(6): p. D357-D365.
49. Charlton, M.D.B. and G.J. Parker, Fabrication of high aspect ratio silicon microstructures by anodic etching. Journal of Micromechanics and Microengineering, 1997. 7(3): p. 155-158.
50. Eijkel, C.J.M., et al., A new technology for micromachining of silicon - dopant selective hf anodic etching for the realization of low-doped monocrystalline silicon structures. Ieee Electron Device Letters, 1990. 11(12): p. 588-589.
51. Kolasinski, K.W., Silicon nanostructures from electroless electrochemical etching. Current Opinion in Solid State & Materials Science, 2005. 9(1-2): p. 73-83.
52. Levyclement, C., et al., Photoelectrochemical etching of silicon. Electrochimica Acta, 1992. 37(5): p. 877-888.
53. Kim, H.C., D.H. Kim, and K. Chun, Photo-assisted electrochemical etching of a nano-gap trench with high aspect ratio for MEMS applications. Journal of Micromechanics and Microengineering, 2006. 16(5): p. 906.
54. Stirland, D.J. and B.W. Straughan, Review of etching and defect characterization of gallium-arsenide substrate material. Thin Solid Films, 1976. 31(1-2): p. 139-170.
55. Lee, C.-L., et al., Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. Journal of Materials Chemistry, 2008. 18(9): p. 1015.
56. Tsujino, K. and M. Matsumura, Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochimica Acta, 2007. 53(1): p. 28-34.
57. Tsujino, K. and M. Matsumura, Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Advanced Materials, 2005. 17(8): p. 1045-+.
58. Peng, K.Q., et al., Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Advanced Functional Materials, 2006. 16(3): p. 387-394.
59. Peace, G.S., Taguchi method. 1993.
60. Roy, R., A primer on the Taguchi method. 1990.
61. Fisher, R.A., Statistical Methods for Research Workers. 1925: Oliver and Boyd, London.
62. Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *