|
1.Schalkwijk W. and Scrosati B., Advances in lithium ion batteries-introduction advances in lithium-ion batteries, W. Schalkwijk and B.Scrosati, Editors. 2002, Springer US. p. 1-5. 2.Marchioni F., et al., Protection of lithium metal surfaces using chlorosilanes. Langmuir, 2007. 23(23): p. 11597-11602. 3.Tarascon J.M. and Armand M., Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-67. 4.Kalaiselvi N., et al., Synthesis of optimized LiNiO2 for lithium ion batteries. Ionics, 2003. 9(5): p. 382-387. 5.Kim D.K., et al., Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett., 2008. 8(11): p. 3948-3952. 6.Boyle T.J., et al., Rechargeable lithium battery cathodes. nonaqueous synthesis, characterization, and electrochemical properties of LiCoO2. Chem. Mater., 1998. 10(8): p. 2270-2276. 7.Etacheri V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci., 2011. 4(9): p. 3243-3262. 8.Guyomard D. and Tarascon J.-M., Rocking-chair or lithium-ion rechargeable lithium batteries. Adv.Mater., 1994. 6(5): p. 408-412. 9.Ji L.W., et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energ. Environ. Sci., 2011. 4(8): p. 2682-2699. 10.Kar T., Pattanayak J., and Scheiner S., Insertion of lithium ions into carbon nanotubes: an ab initio study. J. Phys. Chem. A, 2001. 105(45): p. 10397-10403. 11.Yoo E., et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008. 8(8): p. 2277-2282. 12.Paek S.-M., Yoo E., and Honma I., Enhanced cyclic performance and lithium storage capacity of SnO2/Graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett., 2008. 9(1): p. 72-75. 13.Souza D.C.S., et al., A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science, 2002. 296(5575): p. 2012-2015. 14.Silva D.C.C., et al., Reversible lithium uptake by FeP2. Electrochem. Solid St., 2003. 6(8): p. A162-A165. 15.Gillot F., et al., Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-lon batteries. Chem. Mater., 2005. 17(25): p. 6327-6337. 16.Boyanov S., et al., P-redox mechanism at the origin of the high lithium storage in NiP2-based batteries. Chem. Mater., 2009. 21(2): p. 298-308. 17.Park C.M., et al., Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010. 39(8): p. 3115-3141. 18.Bichat M.P., et al., Electrochemical reactivity of Cu3P with lithium. J. Electrochem. Soc., 2004. 151(12): p. A2074-A2081. 19.Crosnier O. and Nazar L.F., Facile reversible displacement reaction of Cu3P with lithium at low potential. Electrochem. Solid St., 2004. 7(7): p. A187-A189. 20.Vaughey J.T., et al., NiAs- versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li2CuSn. Electrochem. Commun., 1999. 1(11): p. 517-521. 21.Alcantara R., et al., Electrochemical reaction of lithium with CoP3. J. Power Sources, 2002. 109(2): p. 308-312. 22.Pralong V., et al., Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochem. Commun., 2002. 4(6): p. 516-520. 23.Kishore M.V.V.M.S. and Varadaraju U.V., Phosphides with zinc blende structure as anodes for lithium-ion batteries. J. Power Sources, 2006. 156(2): p. 594-597. 24.Poizot P., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499. 25.Idota Y., et al., Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science, 1997. 276(5317): p. 1395-1397. 26.Guo Y.G., Hu Y.S., and Maier J., Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem. Commun., 2006(26): p. 2783-2785. 27.Chen J., et al., α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater., 2005. 17(5): p. 582-586. 28.Zhou G., et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater., 2010. 22(18): p. 5306-5313. 29.Wang G.X., et al., Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources, 2002. 109(1): p. 142-147. 30.Wu Z.-S., et al., Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010. 4(6): p. 3187-3194. 31.Needham S.A., Wang G.X., and Liu H.K., Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources, 2006. 159(1): p. 254-257. 32.Park J.C., et al., Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater., 2009. 21(7): p. 803-807. 33.Lai C.-H., et al., Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem., 2010. 20(32): p. 6638-6645. 34.Kim B.-C., et al., All solid state Li-ion secondary battery with FeS anode. Solid State Ionics, 2005. 176(31–34): p. 2383-2387. 35.Yan J.M., et al., A study of novel anode material CoS2 for lithium ion battery. J. Power Sources, 2005. 146(1–2): p. 264-269. 36.Wang Q., et al., CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J. Phys. Chem. C, 2011. 115(16): p. 8300-8304. 37.Park C.-M., et al., Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010. 39(8): p. 3115-3141. 38.Chan C.K., Zhang X.F., and Cui Y., High capacity Li ion battery anodes using Ge nanowires. Nano Lett., 2008. 8(1): p. 307-309. 39.Liu X.H., et al., Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 2011. 11(9): p. 3991-3997. 40.Park M.H., et al., Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Edit., 2011. 50(41): p. 9647-9650. 41.Seo M.H., et al., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energ. Environ. Sci., 2011. 4(2): p. 425-428. 42.Yoon S., Park C.M., and Sohn H.J., Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid St., 2008. 11(4): p. A42-A45. 43.Chockla A.M., et al., Solution-grown germanium nanowire anodes for lithium-ion batteries. Acs Appl. Mater. Inter., 2012. 4(9): p. 4658-4664. 44.Kornowski A., et al., Nanometer-sized colloidal germanium particles - wet-chemical synthesis, laser-induced crystallization and particle growth. Adv. Mater., 1993. 5(9): p. 634-636. 45.Chiu H.W., Chervin C.N., and Kauzlarich S.M., Phase changes in Ge nanoparticles. Chem. Mater., 2005. 17(19): p. 4858-4864. 46.Fok E., et al., Preparation of alkyl-surface functionalized germanium quantum dots via thermally initiated hydrogermylation. Chem. Commun., 2004(4): p. 386-387. 47.Wu H.P., et al., Preparation of Ge nanocrystals via ultrasonic solution reduction. Mater. Lett., 2006. 60(7): p. 986-989. 48.Prabakar S., et al., Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications. Chem. Mater., 2010. 22(2): p. 482-486. 49.Chou N.H., et al., Colloidal Synthesis of germanium nanocrystals using room-temperature benchtop chemistry. Chem. Mater., 2009. 21(18): p. 4105-4107. 50.Lee D.C., et al., Colloidal synthesis of infrared-emitting germanium nanocrystals. J. Am. Chem. Soc., 2009. 131(10): p. 3436-3437. 51.Taylor B.R., et al., Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater., 1999. 11(9): p. 2493-2500. 52.Ma X.C., Wu F.Y., and Kauzlarich S.M., Alkyl-terminated crystalline Ge nanoparticles prepared from NaGe: Synthesis, functionalization and optical properties. J. Solid State Chem., 2008. 181(7): p. 1628-1633. 53.Vaughn D.D., Bondi J.F., and Schaak R.E., Colloidal synthesis of air-stable crystalline germanium nanoparticles with tunable sizes and shapes. Chem. Mater., 2010. 22(22): p. 6103-6108. 54.Gerung H., et al., Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge[N(SiMe3)2]2. Chem. Commun., 2005(14): p. 1914-1916. 55.Lu X.M., et al., Synthesis of germanium nanocrystals in high temperature supercritical fluid solvents. Nano Lett., 2004. 4(5): p. 969-974.
|