帳號:guest(3.135.182.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王鴻哲
作者(外文):Wang, Hung-Che
論文名稱(中文):非晶鍺與多晶鍺微米粒子的合成與它們於鋰電池負極上的比較
論文名稱(外文):Synthesis of Micrometer-sized Amorphous and Polycrystalline Germanium Particles and Their Performance Comparison as Lithium-ion Battery Anodes
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100030609
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:56
中文關鍵詞:鋰電池合成負極比較
外文關鍵詞:GermaniumLithium-ion batterySynthesisAnodeComparison
相關次數:
  • 推薦推薦:0
  • 點閱點閱:178
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇研究使用超臨界熱裂解法(Supercritical thermal decomposition method),透過調整不同的反應溫度和界面活性劑,合成出非晶和多晶鍺微米粒子並加以比較兩種鍺微米粒子於鋰電池上的表現。第一步藉由掃描式電子顯微鏡、穿透式電子顯微鏡、X 光繞射儀及高解析TEM 分析鍺微米粒子,判斷微米粒子是非晶或多晶,從而組成鋰電池再以電化學儀器測試,其實驗內容共使用兩種方法:第一種為恆電流法;第二種為循環伏安法。
在室溫下,以恆電流法進行0.1C(=139mAg-1)及1C(=1384mAg-1)的充放電,
用以比較經多次充放電循環後,兩者的電容量穩定性、充放電循環的微分電容圖。
接著,利用不同充放電速率進行測試,分析不同速率的電容量以比較非晶和多晶
鍺微米粒子的不同處。最後則利用循環伏安法比較兩者在前幾個循環的電化學反
應電位不同處。實驗結果顯示於充放電速率於1C 充放100 次後,多晶鍺微米粒
子的電容穩定性(96%)優於非晶鍺微米粒子(55%)。此外,多晶鍺微米粒子在第一
次循環充電的微分電容圖比非晶鍺於0.35V 附近多一個反應訊號此為結晶鍺轉
非晶鍺的特徵。從循環伏安法得知,兩者間的不同在於多晶鍺第一個循環的還原
電位多了一個0.3V 的反應訊號外,而非晶鍺在氧化電位比多了0.36V 的反應訊
號。
The purpose of this study is to synthesize micrometer-sized particles of amorphous and polycrystalline germanium by supercritical thermal decomposition’s method and ultimately draw a comparison between the behavior of these two particles in lithium batteries. To investigate the phase and size of germanium particles and further develop them in lithium batteries, an analysis of germanium particles is conducted with scanning electron microscope, transmission electron microscope,X-ray diffraction and HR-TEM. Moreover, two electrochemical methods are employed so as to compare and contrast the pattern of these two micrometer-sized particles of amorphous and polycrystalline germanium. One is galvanostatic method.The other is cyclic voltammetry (CV).On exploring differences in stability of capacity and differential capacity profiles between amorphous and polycrystalline germanium, a discharge-charge cycling is performed under the galvanostatic method at ambient temperature. In this method, the voltage ranges from 0.01V to 3V at 0.1C discharge -charge rate. Next, a cyclic voltammetry (CV) experiment in different potential is carried out for the analysis of multi-rate discharge-charge capacity between amorphous and polycrystalline
germanium micrometer-sized particles. The experiment results indicate that polycrystalline germanium’s cyclic stability(96%) for high rate (1C) 100cycles is better than that of amorphous germanium(55%). In addition, from differential capacity and cyclic voltammetry profiles, we understand that there exist differences between amorphous and polycrystalline germanium in lithiated and de-lithiated
potential.
第一章 緒論 1
1.1前言 1
第二章 文獻回顧 2
2.1鋰離子電池發展歷史與特性 2
2.2鋰離子電池關鍵參數 4
2.3鋰離子電池工作機制 5
2.4鋰離子電池負極材料 7
2.5鍺粒子的合成方法 15
2.6研究動機與目的 21
第三章 實驗內容 22
3.1實驗流程 22
3.2實驗藥品及器材 23
3.3實驗設備 24
3.4實驗分析儀器 25
3.5實驗步驟 25
(a)鍺微米粒子合成 25
(b)鍺微米粒子漿料製備鋰離子電池負極極片步驟 26
(c)鈕扣型鋰電池組裝 26
第四章 結果與討論 27
4.1鍺微米粒子的形狀粒徑大小控制與界面活性劑的關係 27
4.2非晶和結晶鍺的微米粒子與反應溫度間的關係 31
4.3鍺微米粒子判斷為多晶鍺的HR-TEM及SAED Pattern 33
4.4非晶和多晶鍺微米粒子的粒徑分佈 35
4.5相同充放電速率的循環曲線圖及微分電容圖分析 36
4.6多重充放電速率之非晶與多晶鍺的循環曲線圖比較 45
4.7非晶與多晶鍺鋰電池之循環伏安法分析比較 48
第五章 結論 51
第六章 參考文獻 53
1.Schalkwijk W. and Scrosati B., Advances in lithium ion batteries-introduction advances in lithium-ion batteries, W. Schalkwijk and B.Scrosati, Editors. 2002, Springer US. p. 1-5.
2.Marchioni F., et al., Protection of lithium metal surfaces using chlorosilanes. Langmuir, 2007. 23(23): p. 11597-11602.
3.Tarascon J.M. and Armand M., Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-67.
4.Kalaiselvi N., et al., Synthesis of optimized LiNiO2 for lithium ion batteries. Ionics, 2003. 9(5): p. 382-387.
5.Kim D.K., et al., Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett., 2008. 8(11): p. 3948-3952.
6.Boyle T.J., et al., Rechargeable lithium battery cathodes. nonaqueous synthesis, characterization, and electrochemical properties of LiCoO2. Chem. Mater., 1998. 10(8): p. 2270-2276.
7.Etacheri V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci., 2011. 4(9): p. 3243-3262.
8.Guyomard D. and Tarascon J.-M., Rocking-chair or lithium-ion rechargeable lithium batteries. Adv.Mater., 1994. 6(5): p. 408-412.
9.Ji L.W., et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energ. Environ. Sci., 2011. 4(8): p. 2682-2699.
10.Kar T., Pattanayak J., and Scheiner S., Insertion of lithium ions into carbon nanotubes:  an ab initio study. J. Phys. Chem. A, 2001. 105(45): p. 10397-10403.
11.Yoo E., et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008. 8(8): p. 2277-2282.
12.Paek S.-M., Yoo E., and Honma I., Enhanced cyclic performance and lithium storage capacity of SnO2/Graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett., 2008. 9(1): p. 72-75.
13.Souza D.C.S., et al., A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science, 2002. 296(5575): p. 2012-2015.
14.Silva D.C.C., et al., Reversible lithium uptake by FeP2. Electrochem. Solid St., 2003. 6(8): p. A162-A165.
15.Gillot F., et al., Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-lon batteries. Chem. Mater., 2005. 17(25): p. 6327-6337.
16.Boyanov S., et al., P-redox mechanism at the origin of the high lithium storage in NiP2-based batteries. Chem. Mater., 2009. 21(2): p. 298-308.
17.Park C.M., et al., Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010. 39(8): p. 3115-3141.
18.Bichat M.P., et al., Electrochemical reactivity of Cu3P with lithium. J. Electrochem. Soc., 2004. 151(12): p. A2074-A2081.
19.Crosnier O. and Nazar L.F., Facile reversible displacement reaction of Cu3P with lithium at low potential. Electrochem. Solid St., 2004. 7(7): p. A187-A189.
20.Vaughey J.T., et al., NiAs- versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li2CuSn. Electrochem. Commun., 1999. 1(11): p. 517-521.
21.Alcantara R., et al., Electrochemical reaction of lithium with CoP3. J. Power Sources, 2002. 109(2): p. 308-312.
22.Pralong V., et al., Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochem. Commun., 2002. 4(6): p. 516-520.
23.Kishore M.V.V.M.S. and Varadaraju U.V., Phosphides with zinc blende structure as anodes for lithium-ion batteries. J. Power Sources, 2006. 156(2): p. 594-597.
24.Poizot P., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499.
25.Idota Y., et al., Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science, 1997. 276(5317): p. 1395-1397.
26.Guo Y.G., Hu Y.S., and Maier J., Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem. Commun., 2006(26): p. 2783-2785.
27.Chen J., et al., α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater., 2005. 17(5): p. 582-586.
28.Zhou G., et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater., 2010. 22(18): p. 5306-5313.
29.Wang G.X., et al., Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources, 2002. 109(1): p. 142-147.
30.Wu Z.-S., et al., Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010. 4(6): p. 3187-3194.
31.Needham S.A., Wang G.X., and Liu H.K., Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources, 2006. 159(1): p. 254-257.
32.Park J.C., et al., Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater., 2009. 21(7): p. 803-807.
33.Lai C.-H., et al., Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem., 2010. 20(32): p. 6638-6645.
34.Kim B.-C., et al., All solid state Li-ion secondary battery with FeS anode. Solid State Ionics, 2005. 176(31–34): p. 2383-2387.
35.Yan J.M., et al., A study of novel anode material CoS2 for lithium ion battery. J. Power Sources, 2005. 146(1–2): p. 264-269.
36.Wang Q., et al., CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J. Phys. Chem. C, 2011. 115(16): p. 8300-8304.
37.Park C.-M., et al., Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010. 39(8): p. 3115-3141.
38.Chan C.K., Zhang X.F., and Cui Y., High capacity Li ion battery anodes using Ge nanowires. Nano Lett., 2008. 8(1): p. 307-309.
39.Liu X.H., et al., Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 2011. 11(9): p. 3991-3997.
40.Park M.H., et al., Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Edit., 2011. 50(41): p. 9647-9650.
41.Seo M.H., et al., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energ. Environ. Sci., 2011. 4(2): p. 425-428.
42.Yoon S., Park C.M., and Sohn H.J., Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid St., 2008. 11(4): p. A42-A45.
43.Chockla A.M., et al., Solution-grown germanium nanowire anodes for lithium-ion batteries. Acs Appl. Mater. Inter., 2012. 4(9): p. 4658-4664.
44.Kornowski A., et al., Nanometer-sized colloidal germanium particles - wet-chemical synthesis, laser-induced crystallization and particle growth. Adv. Mater., 1993. 5(9): p. 634-636.
45.Chiu H.W., Chervin C.N., and Kauzlarich S.M., Phase changes in Ge nanoparticles. Chem. Mater., 2005. 17(19): p. 4858-4864.
46.Fok E., et al., Preparation of alkyl-surface functionalized germanium quantum dots via thermally initiated hydrogermylation. Chem. Commun., 2004(4): p. 386-387.
47.Wu H.P., et al., Preparation of Ge nanocrystals via ultrasonic solution reduction. Mater. Lett., 2006. 60(7): p. 986-989.
48.Prabakar S., et al., Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications. Chem. Mater., 2010. 22(2): p. 482-486.
49.Chou N.H., et al., Colloidal Synthesis of germanium nanocrystals using room-temperature benchtop chemistry. Chem. Mater., 2009. 21(18): p. 4105-4107.
50.Lee D.C., et al., Colloidal synthesis of infrared-emitting germanium nanocrystals. J. Am. Chem. Soc., 2009. 131(10): p. 3436-3437.
51.Taylor B.R., et al., Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater., 1999. 11(9): p. 2493-2500.
52.Ma X.C., Wu F.Y., and Kauzlarich S.M., Alkyl-terminated crystalline Ge nanoparticles prepared from NaGe: Synthesis, functionalization and optical properties. J. Solid State Chem., 2008. 181(7): p. 1628-1633.
53.Vaughn D.D., Bondi J.F., and Schaak R.E., Colloidal synthesis of air-stable crystalline germanium nanoparticles with tunable sizes and shapes. Chem. Mater., 2010. 22(22): p. 6103-6108.
54.Gerung H., et al., Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge[N(SiMe3)2]2.
Chem. Commun., 2005(14): p. 1914-1916.
55.Lu X.M., et al., Synthesis of germanium nanocrystals in high temperature supercritical fluid solvents. Nano Lett., 2004. 4(5): p. 969-974.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *