帳號:guest(3.133.138.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃致遠
論文名稱(中文):以甲醯胺合成層狀鈦酸鹽之研究
論文名稱(外文):Study of Layered Titanate Synthesized by Formamide
指導教授(中文):汪上曉
口試委員(中文):呂世源
段興宇
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100030605
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:41
中文關鍵詞:甲醯胺層狀鈦酸鹽亞甲基藍吸附
外文關鍵詞:FormamideLayer TitanateMethylene Blue adsorbtion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:381
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自1970年代起,TiO2在光催化性質方面的研究開始興起。由於TiO2對環境無害,目前已廣泛運用於光降解、分解水及染料敏化太陽能電池等光伏應用。將TiO2或其前驅物在鹼性環境下反應則可得到一層狀結構的鈦酸鹽類。其結構為帶負電的TiO6層與帶正電之陽離子層組成。這種層狀鈦酸鹽在重金屬離子捕捉、有機汙染物吸附及光降解等方面皆有應用價值。目前已有的層狀鈦酸鹽的合成方法是將TiO2和鹼金屬或強鹼溶液反應,或是將含鈦之前驅物在鹼性溶液中反應得到。

在本論文中提出以和文獻中不同的方法合成層狀鈦酸鹽,使用溶液為甲醯胺,而合成得到之層狀鈦酸鹽是以NH4+作為夾層陽離子。經由X-ray繞射鑑定,可確認以這種方法合成的層狀鈦酸鹽是和JCPDS資料庫中已建檔之層狀鈦酸鹽H2Ti2O5不同,且由傅立葉紅外光譜儀(FT-IR)鑑定得知產物中的確有NH4+存在。最後由熱重分析(TGA)結果計算產物分子式為(NH4)2Ti7O15。產物比表面積由BET法計算為334 m2/g,在亞甲基藍(MB)吸附實驗中可達到213 mg/g之吸附量。
目錄
誌謝 I
摘要 II
目錄 III
圖目錄 V
表目錄 VII
第一章、 緒論 1
一.1. 二氧化鈦光觸媒 (TiO2 photocatalyst) 1
一.2. 層狀鈦酸鹽 (Layered Titanate) 3
第二章、 文獻回顧 4
二.1. 二氧化鈦基本性質 4
二.2. 二氧化鈦製備 6
二.2.1 非烷氧基路線 (non-alkoxide route) 6
二.2.2 烷氧基路線 (Alkoxide route) 9
二.3. 層狀鈦酸鹽 (Layered Titanate) 11
二.3.1. 層狀鈦酸鹽結構 11
二.3.2. 層狀鈦酸鹽製備 12
二.4. 層狀鈦酸鹽應用 16
二.5. 研究動機 18
第三章、 實驗 19
三.1 實驗藥品 19
三.2 實驗器材 20
三.3 分析儀器 22
三.4 實驗步驟 23
三.4.1 層狀鈦酸鹽製備與鑑定 23
三.4.2 亞甲基藍(MB)吸附實驗 25
第四章、 結果與討論 27
四.1. 層狀鈦酸鹽鑑定 27
四.2. 亞甲基藍吸附實驗結果 35
四.3. 結論 37
參考文獻 38

1. Choi, W. Pure and modified TiO2 photocatalysts and their environmental applications. Catalysis Surveys from Asia 10, 16-28 (2006).
2. Carp, O., Huisman, C.L. & Reller, A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 32, 33-177 (2004).
3. Sivula, K., Le Formal, F. & Graetzel, M. WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach. Chemistry of Materials 21, 2862-2867 (2009).
4. Mills, A. & LeHunte, S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry 108, 1-35 (1997).
5. Bahnemann, D.W., Kormann, C. & Hoffmann, M.R. PREPARATION AND CHARACTERIZATION OF QUANTUM SIZE ZINC-OXIDE - A DETAILED SPECTROSCOPIC STUDY. Journal of Physical Chemistry 91, 3789-3798 (1987).
6. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews 11, 401-425 (2007).
7. Gratzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 44, 6841-6851 (2005).
8. Fujishima, A., Zhang, X. & Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports 63, 515-582 (2008).
9. Carneiro, J.O. et al. Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Materials Science and Engineering B-Solid State Materials for Advanced Technology 138, 144-150 (2007).
10. Mitoraj, D. et al. Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochemical & Photobiological Sciences 6, 642-648 (2007).
11. Sakai, N., Ebina, Y., Takada, K. & Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. Journal of the American Chemical Society 126, 5851-5858 (2004).
12. Ma, R.Z., Bando, Y. & Sasaki, T. Directly rolling nanosheets into nanotubes. Journal of Physical Chemistry B 108, 2115-2119 (2004).
13. Zhang, S., Chen, Q. & Peng, L.M. Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B 71 (2005).
14. Sasaki, T. & Watanabe, M. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. Journal of the American Chemical Society 120, 4682-4689 (1998).
15. Li, N., Zhang, L., Chen, Y., Tian, Y. & Wang, H. Adsorption behavior of Cu(II) onto titanate nanofibers prepared by alkali treatment. Journal of Hazardous Materials 189, 265-272 (2011).
16. Wu, H.B., Lou, X.W. & Hng, H.H. Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO2 for Lithium-Ion Batteries. Chemistry-a European Journal 18, 2094-2099 (2012).
17. Chen, D., Huang, F., Cao, L., Cheng, Y.-B. & Caruso, R.A. Spiky Mesoporous Anatase Titania Beads: A Metastable Ammonium Titanate-Mediated Synthesis. Chemistry-a European Journal 18, 13762-13769 (2012).
18. Xiong, L. et al. Adsorption behavior of methylene blue onto titanate nanotubes. Chemical Engineering Journal 156, 313-320 (2010).
19. Jitputti, J. et al. Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 10, 378-382 (2009).
20. Song, Z.Q., Xu, H.Y., Li, K.W., Wang, H. & Yan, H. Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5 center dot-H2O nanosheets. Journal of Molecular Catalysis a-Chemical 239, 87-91 (2005).
21. Landmann, M., Rauls, E. & Schmidt, W.G. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics-Condensed Matter 24 (2012).
22. Zhang, Q.H., Gao, L. & Guo, J.K. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B-Environmental 26, 207-215 (2000).
23. Sclafani, A., Palmisano, L. & Schiavello, M. INFLUENCE OF THE PREPARATION METHODS OF TIO2 ON THE PHOTOCATALYTIC DEGRADATION OF PHENOL IN AQUEOUS DISPERSION. Journal of Physical Chemistry 94, 829-832 (1990).
24. Wunderlich, W. et al. Electronic properties of nano-porous TiO2- and ZnO-thin films-comparison of simulations and experiments. Journal of Ceramic Processing Research 5, 343-354 (2004).
25. Selloni, A. Crystal growth - Anatase shows its reactive side. Nature Materials 7, 613-615 (2008).
26. Thompson, T.L. & Yates, J.T. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chemical Reviews 106, 4428-4453 (2006).
27. Gupta, S. & Tripathi, M. A review of TiO2 nanoparticles. Chinese Science Bulletin 56, 1639-1657 (2011).
28. Peng, X.S. & Chen, A.C. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. Journal of Materials Chemistry 14, 2542-2548 (2004).
29. Varghese, O.K. et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials 15, 624-627 (2003).
30. Pradhan, S.K., Reucroft, P.J., Yang, F.Q. & Dozier, A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth 256, 83-88 (2003).
31. Wu, J.J. & Yu, C.C. Aligned TiO2 nanorods and nanowalls. Journal of Physical Chemistry B 108, 3377-3379 (2004).
32. Wu, J.M., Shih, H.C. & Wu, W.T. Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation. Chemical Physics Letters 413, 490-494 (2005).
33. Wu, J.M., Shih, H.C., Wu, W.T., Tseng, Y.K. & Chen, I.C. Thermal evaporation growth and the luminescence property of TiO2 nanowires. Journal of Crystal Growth 281, 384-390 (2005).
34. Bischoff, B.L. & Anderson, M.A. PEPTIZATION PROCESS IN THE SOL-GEL PREPARATION OF POROUS ANATASE (TIO2). Chemistry of Materials 7, 1772-1778 (1995).
35. Kao, L.-H., Hsu, T.-C. & Lu, H.-Y. Sol-gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment. Journal of Colloid and Interface Science 316, 160-167 (2007).
36. Yang, J., Mei, S. & Ferreira, J.M.F. Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 15, 183-185 (2001).
37. Kim, K.D., Kim, S.H. & Kim, H.T. Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. Colloids and Surfaces a-Physicochemical and Engineering Aspects 254, 99-105 (2005).
38. Li, G.L. & Wang, G.H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostructured Materials 11, 663-668 (1999).
39. Livage, J., Henry, M. & Sanchez, C. SOL-GEL CHEMISTRY OF TRANSITION-METAL OXIDES. Progress in Solid State Chemistry 18, 259-341 (1988).
40. Hubertpfalzgraf, L.G. ALKOXIDES AS MOLECULAR PRECURSORS FOR OXIDE-BASED INORGANIC MATERIALS - OPPORTUNITIES FOR NEW MATERIALS. New Journal of Chemistry 11, 663-675 (1987).
41. Sanchez, C., Livage, J., Henry, M. & Babonneau, F. CHEMICAL MODIFICATION OF ALKOXIDE PRECURSORS. Journal of Non-Crystalline Solids 100, 65-76 (1988).
42. Takezawa, Y. & Imai, H. Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area. Small 2, 390-393 (2006).
43. Xie, S. et al. Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. Crystengcomm 14, 7715-7720 (2012).
44. Sutradhar, N., Sinhamahapatra, A., Pahari, S.K., Bajaj, H.C. & Panda, A.B. Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution. Chemical Communications 47, 7731-7733 (2011).
45. Sasaki, T. et al. PREPARATION AND ACID-BASE PROPERTIES OF A PROTONATED TITANATE WITH THE LEPIDOCROCITE-LIKE LAYER STRUCTURE. Chemistry of Materials 7, 1001-1007 (1995).
46. Rebbah, H., Desgardin, G. & Raveau, B. ATIMOS OXIDES - CATIONIC EXCHANGERS. Materials Research Bulletin 14, 1125-1131 (1979).
47. Grey, I.E., Madsen, I.C., Watts, J.A., Bursill, L.A. & Kwiatkowska, J. NEW CESIUM TITANATE LAYER STRUCTURES. Journal of Solid State Chemistry 58, 350-356 (1985).
48. Peng, C.-W. et al. (101)-exposed anatase TiO2 nanosheets. Chemistry of Materials 20, 2426-2428 (2008).
49. Zhao, B., Chen, F., Gu, X. & Zhang, J. Organic-Stabilizer-Free Synthesis of Layered Protonic Titanate Nanosheets. Chemistry-an Asian Journal 5, 1546-1549 (2010).
50. Rhee, C.H., Lee, J.S. & Chung, S.H. Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. Journal of Materials Research 20, 3011-3020 (2005).
51. Takezawa, Y. & Imai, H. Structural control on crystal growth of titanate in aqueous system: Selective production of nanostructures of layered titanate and anatase-type titania. Journal of Crystal Growth 308, 117-121 (2007).
52. Pavasupree, S., Ngamsinlapasathian, S., Suzuki, Y. & Yoshikawa, S. Preparation and characterization of high surface area nanosheet titania with mesoporous structure. Materials Letters 61, 2973-2977 (2007).
53. Zhao, B., Chen, F., Huang, Q. & Zhang, J. Brookite TiO2 nanoflowers. Chemical Communications, 5115-5117 (2009).
54. Zhao, B., Chen, F., Jiao, Y. & Zhang, J. Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. Journal of Materials Chemistry 20, 7990-7997 (2010).
55. Jiao, Y., Zhao, B., Chen, F. & Zhang, J. Insight into the crystal lattice formation of brookite in aqueous ammonia media: the electrolyte effect. Crystengcomm 13, 4167-4173 (2011).
56. Gao, Y.P. et al. A Facile One-Pot Synthesis of Layered Protonated Titanate Nanosheets Loaded with Silver Nanoparticles with Enhanced Visible-Light Photocatalytic Performance. Chemistry-an Asian Journal 8, 204-211 (2013).
57. Tang, Y. et al. Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. Journal of Materials Chemistry 20, 10169-10178 (2010).
58. Huang, J.Q., Cao, Y.G., Liu, Z.G., Deng, Z.H. & Wang, W.C. Application of titanate nanoflowers for dye removal: A comparative study with titanate nanotubes and nanowires. Chemical Engineering Journal 191, 38-44 (2012).
59. Padinhattayil, H., Augustine, R. & Shukla, S. Dye-Adsorption Capacity of High Surface-Area Hydrogen Titanate Nanosheets Processed via Modified Hydrothermal Method. Journal of Nanoscience and Nanotechnology 13, 3035-3045 (2013).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *