帳號:guest(18.221.102.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱致瑋
作者(外文):Chu, Chih-Wei
論文名稱(中文):Synthesis and Characterization of Cyclic Conjugated Architectures Composed of Thiophene and Benzothiadiazole Units
指導教授(中文):堀江正樹
口試委員(中文):蘇安仲
游進陽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100030603
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:86
中文關鍵詞:conjugated moleculesMcMurray couplingdonor-acceptor-donor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
Since the conjugated molecules have been developed in past decades, the applications of conjugated molecules to organic electronics have been caught much attention due to their diverse properties and facile fabrication process of flexible devices using printing techniques with low-cost. In this thesis, synthesis and characterization of novel conjugated cyclophanes comprising dialkylthiophene (Th) and benzothiadiazole (BT) linked with vinylenes are reported. The cyclization reaction was achieved by McMurry coupling of Th-BT-Th sequence terminated with two formyl groups. The synthesized compounds in each reaction step were characterized by 1H NMR, GC mass, and FAB mass spectroscopies. The crucial compounds such as cyclophanedienes, cyclophanetrienes, and linear dimer were further identified by 13C NMR and high resolution mass spectroscopies. 1H NMR spectra of cyclophanedienes showed a specific upfield shift of a peak position of BT protons by 0.3 ppm than that of cyclophanetrienes. X-ray single crystallography of one of the cyclophanedienes displayed closed and strained structures and intermolecular π–π stacking at a thiadiazole part in the BT group. The optical and electrochemical properties were examined by measurements of UV-vis and photoluminescence spectra as well as cyclic voltammetry (CV). The cyclic molecules exhibited an absorption band at 444 nm because of charge transfer structures comprising donor-acceptor-donor sequential groups.
Table of Contents
Abstract I
Chapter 1. Introduction and Aims 1
1.1 Conjugated Molecules 1
1.1.1 History 1
1.1.2 Applications of Organic Semiconductors in Recent Years 4
1.2 McMurry Coupling 9
1.2.1 History 9
1.2.2 Applications in Recent Years 13
1.3 Aims of this Work 21
References 22
Chapter 2. Synthesis and Characterization 25
2.1 Introduction 25
2.2 Synthesis of Conjugated Molecules 28
2.2.1 Synthesis of Precursors 28
2.2.2 Synthesis of Cyclic and Linear Molecules 30
2.3 Structure Determination by X-ray Single Crystallography 39
2.4 Optical Properties 41
2.5 Electrochemical Property 45
2.6 Thermal Properties 50
References 52
Chapter 3. Conclusions and Future Works 54
Chapter 4. Experimental Section 55
4.1 General Procedures 55
4.2 General Synthesis of 3,4-Dialkylthiophene (1a, 1b) 57
4.3 General Synthesis of 2-(3,4-Diakylthien-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2a, 2b). 58
4.4 Synthesis of 7-Dibromo-2,1,3-benzothiadiazole (3) 59
4.5 General Synthesis of 4,7-bis-(3,4-Dialkylthiophen-2-yl)benzo[1,2,5]thiadiazole (4a, 4b) 59
4.6 General Synthesis of 5,5’-(2,1,3-Benzothiadiazole-4,7-diyl-)bis(3,4-dialkylthiophen-2-dicarbaldehyde) (5a, 5b) 61
4.7 Synthesis of 5-(7-(3,4-Dihexylthiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)-3,4-dihexylthiophene-2-carbaldehyde (6) 62
4.8 General Synthesis of Cyclophanedienes, Cyclophanetrienes, and Linear Oligomer (7a, 7b, 8a, 8b, 9) 63
4.9 Synthesis of (E)-1,2-bis(5-(7-(3,4-Dihexylthiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)-3,4-dihexylthiophen-2-yl)ethene (10) 66
4.10 X-ray Single Crystallography 68
Appendix 70
1. C.K. Chiang, C. B. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
2. A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed. 1998, 37, 402.
3. C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
4. M. Muccini, Nat. Mater. 2006, 5, 605.
5. C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
6. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474.
7. S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
8. Y. F. Li, Acc. Chem. Res. 2012, 45, 723.
9. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, Y. Chen, J. Am. Chem. Soc. 2012, 134, 16345.
10. K. R. Graham, J. G. Mei, R. Stalder, J. W. Shim, H. Cheun, F. Steffy, F. So, B. Kippelen, J. R. Reynolds, ACS Appl. Mater. Interfaces 2011, 3, 1210−1215.
11. Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, L. P. Yu, J. Am. Chem. Soc. 2009, 131, 7792
12. Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
13. Y. Huang, X. Guo, F. Liu, L. Huo, Y. Chen, T. P. Russell, C. C. Han, Y. Li, J. Hou, Adv. Mater. 2012, 24, 3383
14. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nature Materials 2007, 6, 497.
15. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
16. C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, S. Patil, J. Am. Chem. Soc. 2012, 134, 16532.
17. Z. Hao, A. Iqbal, Chem. Soc. Rev. 1997, 26, 203
18. J. Smith, W. Zhang, R. Sougrat, K. Zhao, R. Li, D. Cha, A. Amassian, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2012, 24, 2441.
19. C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya, E. Nakamura. J. Am. Chem. Soc. 2012, 134, 5448.
20. J. Soeda, Y. Hirose, M. Yamagishi, A. Nakao, T. Uemura, K. Nakayama, M. Uno, Y. Nakazawa, K. Takimiya, J. Takeya, Adv. Mater. 2011, 23, 3309.
21. J. E. McMurry, M. P. Fleming, J. Am. Chem. Soc. 1974, 96, 4708.
22. T. Mukaiyama, T. Sato, J. Hana, Chem. Lett. 1973, 1041.
23. S. Tyrlik, I. Wolochowicz, Bull. Soc. Chim. Fr. 1973, 2147.
24. J. E. McMurry, M. P. Fleming, K. L. Kees, L. R. Krepski, J. Org. Chem. 1978, 43, 3255.
25. J. E. McMurry, J. G. Rico, Tetrahedron Lett. 1989, 30, 1169; 1173.
26. A. Fürstner, B. Bogdanović, Angew. Chem. Int. Ed. Engl. 1996, 35, 2442.
27. A. Fürstner, O. R. Thiel, N. Kindler, B. Bartkowska, J. Org. Chem. 2000, 65, 7990.
28. Z. Liu, T. Zhang, Y. Li, Tetrahedron Lett. 2001, 42, 275.
29. D. R. Williams, R. W. Heidebrecht, Jr., J. Am. Chem. Soc. 2003, 125, 1843.
30. K. M. Smith, In Porphyrins and Metalloporphyrins; K. M. Smith, Ed.; Elsevier: Amsterdam, 1975; pp 3-28.
31. T. D. Lash, S. A. Jones, G. M. Ferrence, J. Am. Chem. Soc. 2010, 132, 12786.
32. D. Kuzuhara, H. Yamada, K. Yano, T. Okujima, S. Mori, H. Uno, Chem. Eur. J. 2011, 17, 3376.
33. T. Sarma, P. K. Panda, P. T. Anusha, S. V. Rao, Org. Lett. 2011, 13, 188.
34. F. Goldoni, R. A. J. Janssen, E. W. Meijer, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 4629.
35. H. Thomas, N. Stuhr-Hansen, F. Westerlund, B. W. Laursen, M. Magnussen, H. O. Sørensen, T. Bjørnholm, J. B. Christensen, Tetrahedron Lett. 2009, 50, 7374.
36. C. S. Gonçalves, J. P. Serbena, I. A. Hümmelgen, J. Gruber, Macromol. Symp. 2006, 244, 22.
37. Y. Shirota, J. Mater. Chem. 2000, 10, 1.
38. Y. Shirota, J. Mater. Chem. 2005, 15, 75.
39. Y. Song, C. Di, X. Yang, S. Li, W. Xu, Y. Liu, L. Yang, Z. Shuai, D. Zhang, D. Zhu, J. Am. Chem. Soc. 2006, 128, 15940.
40. Y. Song, C. Di, W. Xu, D. Zhang, D. Zhu, J. Mater. Chem. 2007, 17, 4483.
41. Y. Qiao, Z. Wei, C. Risko, H. Li, J. L. Brédas, W. Xu, D. Zhu, J. Mater. Chem. 2012, 22, 1313.

42. Y. Song, C. Di, X. Yang, S. Li, W. Xu, Y. Liu, L. Yang, Z. Shuai, D. Zhang, D. Zhu, J. Am. Chem. Soc. 2006, 128, 15940.
43. Y. Song, C. Di, W. Xu, D. Zhang, D. Zhu, J. Mater. Chem. 2007, 17, 4483.
44. Y. Qiao, Z. Wei, C. Risko, H. Li, J. L. Brédas, W. Xu, D. Zhu, J. Mater. Chem. 2012, 22, 1313.
45. Z. Y. Hu, J. L. Atwood, M. P. Cava, J. Org. Chem. 1994, 59, 8071.
46. M. Horie, I. W. Shen, S. M. Tuladhar, H. Leventis, S. A. Haque, J. Nelson, B. R. Saunders, M. L. Turner, Polymer 2010, 51, 1541.
47. Y. J. He, G. J. Zhao, J. Min, M. J. Zhang, Y. F. Li, Polymer 2009, 50, 5055.
48. S. Y. Jang, B. Y. Lim, B. K. Yu, J. W. Kim, K. J. Baeg, D. Y. Khim, D. Y. Kim, J. Mater. Chem. 2011, 21, 11822.
49. J. C. Speros, B. D. Paulsen, B. S. Slowinski, C. D. Frisbie, M. A. Hillmyer, ACS Macro. Lett. 2012, 1, 986.
50. C. W. Spangler, M. Q. He, J. Chem. Soc., Perkin Trans. 1 1995, 6, 715-720.
51. S. Haid, A. Mishra, C. Uhrich, M. Pfeiffer, P. Büuerle, Chem. Mater. 2011, 23, 4435.
52. J. H. Kim, H. U. Kim, D. Mi, S. H. Jin, W. S. Shin, S. C. Yoon, I. N. Kang, D. H. Hwang, Macromolecules 2012, 45, 2367.
53. J. J. Kim, H. Choi, J. W. Lee, M. S. Kang, K. Song, S. O. Kang, J. Ko, J. Mater. Chem. 2008, 18, 5223.
54. S. Wen, J. Pei, P. Li, Y. Zhou, W. Cheng, Q. Dong, Z. Li, W. Tian, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 2715.
55. A. Fürstner, B. Bogdanović, Angew. Chem. Int. Ed. Engl. 1996, 35, 2442.
56. T. Cai, Y. Zhou, E. Wang, S. Hellström, F. Zhang, S. Xu, O. Inganäs, M. R. Andersson, Sol. Energy Mater. Sol. Cells. 2010, 94, 1275.
57. M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2012, 22, 381.
58. S.-W. Chang, H. Waters, J. Kettle, M. Horie, Org. Electron. 2012, 13, 2967-2974.
59. K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatani, H. Miyasaki, T. Nishinaga, M. Iyoda, J. Am. Chem. Soc. 2006, 128, 16740-16747.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *