|
[1] Akaike, H. (1973). Information theory and an extension of maximum likelihood principle. In Second international symposium on information theory , eds. Petrov, B. N. and Csaki, F. [2] Bondell, H. D., Krishna, A., & Ghosh, S. K. (2010). Joint variable selection for fixed and random effects in linear mixed effects models. Biometrics, 66(4), 1069-1077. [3] Cressie, N. and Johannesson, G. (2008), Fixed rank kringing for very large spatial data sets. Journal of the Royal Statistical Society , Series B 70, 20926 [4] Cressie, N., Shi, T. and Kang, E. L. (2010), Fixed rank ltering for spatial-temporal data.Journal of Computational and Graphical Statistics, 19, 724-745. [5] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society , Series B 39, 138. [6] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statistic. Assoc. 96 13481360. MR1946581 [7] Kalman, R. (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 3545. [8] Katzfuss, M., & Cressie, N. (2011). Spatial-temporal smoothing and EM estimation for massive remotesensing data sets. Journal of Time Series Analysis , 32(4), 430-446. [9] Mardia, K., Goodall, C., Redfern, E. and Alonso, F. (1998) The kringed Kalman filter. Test 7, 21782. [10] Shumway, R. and Stoffer, D. (1982) An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis 3, 25364. [11] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464. [12] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101, 1418-1429. |