|
[1] Arcagni, A. and Bagnato, L. (2009). Package sBF (Smooth Backfitting with R).
[2] Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). The Annals of Statistics, 17, 453-555.
[3] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. London: Chapman and Hall.
[4] Fan, J., Manmen, E. and Hardle, W. (1998). Direct estimation of low-dimensional components in additive models. The Annals of Statistics, 26, 943-971.
[5] Hastie, T. and Tibshirani, R. J. (1990). Generalised additive models. London: Chapman and Hall.
[6] Huang, L. S. and Chan, K. S. (2013). Local polynomial and penalized trigonometric series regression. Statistica Sinica, tentatively accepted.
[7] Huang, L. S. and Chen, J. (2008). Analysis of variance, coefficient of determination and F-test for local polynomial regression. The Annals of Statistics, 36, 2085-2109.
[8] Huang, L. S. and Su, H. (2009). Nonparametric F-tests for nested global and local polynomial models. Journal of Statisticsl Planning and Inference, 139, 1372-1380.
[9] Linton, O. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika, 82, 93-100.
[10] Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backffitting projection algorithm under weak conditions. The Annals of Statistics, 27, 1443-1490.
[11] Newey, W. K. (1994). Kernel Estimation of Partial Means and a General Variance Estimator. Econometric Theory, 10, 233-253.
[12] Nielsen, J. P. and Sperlich, S. (2005). Smooth backfitting in practice. Journal of the Royal Statistical Society, Series B, 67, 43-61.
[13] Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. The Annals of Statistics, 25, 186-211.
[14] Tjøstheim, D. and Auestd, B. H. (1994). Nonparametric identication of nonlinear time series: Projections. The Journal of the American Statistical Association, 89, 1398-1409. |