|
參考文獻 1. Arnold, W. P.; Mittal, C. K.; Katsuki, S.; Murad, F., Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3203-3207. 2. Bin-Nun, A.; Schreiber, M. D., Role of iNO in the modulation of pulmonary vascular resistance. J. Perinatol. 2008, 28, 84-92. 3. Furchgott, R. F.; Zawadzki, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288 , 373-376. 4. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 9265-9269. 5. Odell, T. J.; Hawkins, R. D.; Kandel, E. R.; Arancio, O., Tests of the Roles of 2 Diffusible Substances in Long-Term Potentiation - Evidence for Nitric-Oxide as a Possible Early Retrograde Messenger. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 11285-11289. 6. Culotta, E.; Koshland, D. E., No News Is Good-News. Science 1992, 258, 1862-1865. 7. Marletta, M. A., Nitric-Oxide Synthase - Aspects Concerning Structure and Catalysis. Cell 1994, 78, 927-930. 8. Nakamura, T.; Lipton, S. A., S-nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding. Cell Death Differ. 2007, 14, 1305-1314. 9. (a) Alderton, W. K.; Cooper, C. E.; Knowles, R. G., Nitric oxide synthases: structure, function and inhibition. Biochem. J. 2001, 357, 593-615; (b) Nussler, A. K.; Billiar, T. R., Inflammation, Immunoregulation, and Inducible Nitric-Oxide Synthase. J. Leukoc. Biol. 1993, 54, 171-178; (c) Wlodek, D.; Gonzales, M., Decreased energy levels can cause and sustain obesity. J. Theor. Biol. 2003, 225, 33-44. 10.Hsiao, H.-Y.; Mak, O.-T.; Yang, C.-S.; Liu, Y.-P.; Fang, K.-M.; Tzeng, S.-F., TNF-α/IFN-γ-induced iNOS expression increased by prostaglandin E2 in rat primary astrocytes via EP2-evoked cAMP/PKA and intracellular calcium signaling. Glia 2007, 55, 214-223. 11.Devarie-Baez, N. O.; Zhang, D.; Li, S.; Whorton, A. R.; Xian, M., Direct methods for detection of protein S-nitrosylation. Methods 2013.ASAP 12. Beigi, F.; Gonzalez, D. R.; Minhas, K. M.; Sun, Q. A.; Foster, M. W.; Khan, S. A.; Treuer, A. V.; Dulce, R. A.; Harrison, R. W.; Saraiva, R. M.; Premer, C.; Schulman, I. H.; Stamler, J. S.; Hare, J. M., Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4314-4319. 13.(a) Kroncke, K. D.; Fehsel, K.; Kolb-Bachofen, V., Nitric oxide: Cytotoxicity versus cytoprotection - How, why, when, and where? Nitric Oxide 1997, 1, 107-120; (b) Yang, Z.; Wang, Z. E.; Doulias, P. T.; Wei, W.; Ischiropoulos, H.; Locksley, R. M.; Liu, L., Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 2010, 185, 6664-6669; (c) Ryu, I. H.; Do, S. I., Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem. Biophys. Res. Commun. 2011, 408, 52-57. 14.(a) Stamler, J. S.; Simon, D. I.; Osborne, J. A.; Mullins, M. E.; Jaraki, O.; Michel, T.; Singel, D. J.; Loscalzo, J., S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 444-448; (b) Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S., Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell. Bio. 2005, 6, 150-166. 15.Cardaci, S.; Filomeni, G.; Ciriolo, M. R., Redox implications of AMPK-mediated signal transduction beyond energetic clues. J. Cell Sci. 2012, 125, 2115-2125. 16.Fang, J.; Nakamura, T.; Cho, D. H.; Gu, Z.; Lipton, S. A., S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18742-18747. 17.Westermann, B., Nitric oxide links mitochondrial fission to Alzheimer's disease. Sci. Signal 2009, 2, 29-37. 18.(a) Bonaventura, C.; Ferruzzi, G.; Tesh, S.; Stevens, R. D., Effects of S-nitrosation on oxygen binding by normal and sickle cell hemoglobin. J. Biol. Chem. 1999, 274, 24742-24748; (b) Foster, M. W.; Hess, D. T.; Stamler, J. S., Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 2009, 15, 391-404. 19.Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z.-Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura, Y.; Lipton, S. A., S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441, 513-517. 20.Kim, Y. M.; Talanian, R. V.; Billiar, T. R., Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 1997, 272, 31138-48. 21.Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758. 22.(a) Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021; (b) Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E., Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 2006, 34, 237-247. 23.(a) Li, Z.; Wei, L.; Gao, M. Y.; Lei, H., One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 2005, 17, 1001-1005; (b) Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, 927-34. 24.(a) Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of optical resonances. Chem. Phys. Lett. 1998, 288, 243-247; (b) Yoza, B.; Arakaki, A.; Matsunaga, T., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J. Biotechnol. 2003, 101, 219-228. 25.Lu, Y.; Yin, Y. D.; Mayers, B. T.; Xia, Y. N., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002, 2, 183-186. 26.Li, D.; Teoh, W. Y.; Gooding, J. J.; Selomulya, C.; Amal, R., Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles. Adv. Funct. Mater. 2010, 20, 1767-1777. 27.(a) Hjerten, S.; Zelikman, I.; Lindeberg, J.; Lederer, M., High-Performance Adsorption Chromatography of Proteins on Deformed Non-Porous Agarose Beads Coated with Insoluble Metal-Compounds .2. Coating - Aluminum and Zirconium (Hydr)Oxide with Stoichiometrically Bound Phosphate. J. Chromatogr. 1989, 481, 187-199; (b) Liao, J. L.; Hjerten, S., High-Performance Liquid-Chromatography of Proteins on Compressed, Non-Porous Agarose Beads .2. Anion-Exchange Chromatography. J. Chromatogr. 1988, 457, 175-182; (c) Hjerten, S.; Zelikman, I.; Lindeberg, J.; Liao, J. I.; Eriksson, K. O.; Mohammad, J., High-Performance Adsorption Chromatography of Proteins on Deformed Non-Porous Agarose Beads Coated with Insoluble Metal-Compounds .1. Coating - Ferric Oxyhydroxide with Stoichiometrically Bound Phosphate. J. Chromatogr. 1989, 481, 175-186; (d) Lahooti, S.; Sefton, M. V., Effect of an immobilization matrix and capsule membrane permeability on the viability of encapsulated HEK cells. Biomaterials 2000, 21, 987-995. 28.Gow, A.; Doctor, A.; Mannick, J.; Gaston, B., S-Nitrosothiol measurements in biological systems. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2007, 851, 140-151. 29.Torta, F.; Usuelli, V.; Malgaroli, A.; Bachi, A., Proteomic analysis of protein S-nitrosylation. Proteomics 2008, 8, 4484-4494. 30.(a) Fang, K.; Ragsdale, N. V.; Carey, R. M.; MacDonald, T.; Gaston, B., Reductive assays for S-nitrosothiols: implications for measurements in biological systems. Biochem. Biophys. Res. Commun. 1998, 252, 535-540; (b) Doctor, A.; Platt, R.; Sheram, M. L.; Eischeid, A.; McMahon, T.; Maxey, T.; Doherty, J.; Axelrod, M.; Kline, J.; Gurka, M.; Gow, A.; Gaston, B., Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 5709-5714. 31.(a) Jia, L.; Bonaventura, C.; Bonaventura, J.; Stamler, J. S., S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control. Nature 1996, 380, 221-226; (b) Stamler, J. S.; Jaraki, O.; Osborne, J.; Simon, D. I.; Keaney, J.; Vita, J.; Singel, D.; Valeri, C. R.; Loscalzo, J., Nitric-Oxide Circulates in Mammalian Plasma Primarily as an S-Nitroso Adduct of Serum-Albumin. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 7674-7677. 32.(a) Hausladen, A.; Privalle, C. T.; Keng, T.; DeAngelo, J.; Stamler, J. S., Nitrosative stress: Activation of the transcription factor OxyR. Cell 1996, 86, 719-729; (b) Eu, J. P.; Sun, J. H.; Xu, L.; Stamler, J. S.; Meissner, G., The skeletal muscle calcium release channel: Coupled O-2 sensor and NO signaling functions. Cell 2000, 102, 499-509. 33.Riccio, D. A.; Nutz, S. T.; Schoenfisch, M. H., Visible Photolysis and Amperometric Detection of S-Nitrosothiols. Anal. Chem. 2012, 84, 851-856. 34.Goto, M.; Sato, K.; Murakami, A.; Tokeshi, M.; Kitamori, T., Development of a microchip-based bioassay system using cultured cells. Anal. Chem. 2005, 77, 2125-2131. 35.Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 1998, 70, 2446-2453. 36.Jaffrey, S. R.; Erdjument-Bromage, H.; Ferris, C. D.; Tempst, P.; Snyder, S. H., Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell. Biol. 2001, 3, 193-197. 37.Liu, M.; Hou, J.; Huang, L.; Huang, X.; Heibeck, T. H.; Zhao, R.; Pasa-Tolic, L.; Smith, R. D.; Li, Y.; Fu, K.; Zhang, Z.; Hinrichs, S. H.; Ding, S. J., Site-specific proteomics approach for study protein S-nitrosylation. Anal. Chem. 2010, 82, 7160-7168. 38.Gao, C.; Guo, H.; Wei, J.; Mi, Z.; Wai, P. Y.; Kuo, P. C., Identification of S-nitrosylated proteins in endotoxin-stimulated RAW264.7 murine macrophages. Nitric Oxide 2005, 12, 121-126. 39.Hao, G.; Derakhshan, B.; Shi, L.; Campagne, F.; Gross, S. S., SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5242-5242. 40.Forrester, M. T.; Thompson, J. W.; Foster, M. W.; Nogueira, L.; Moseley, M. A.; Stamler, J. S., Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 2009, 27, 557-559. 41.Tello, D.; Tarin, C.; Ahicart, P.; Breton-Romero, R.; Lamas, S.; Martinez-Ruiz, A., A "fluorescence switch" technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 2009, 9, 5359-5370. 42.Mirza, U. A.; Chait, B. T.; Lander, H. M., Monitoring Reactions of Nitric-Oxide with Peptides and Proteins by Electrospray-Ionization Mass-Spectrometry. J. Biol. Chem. 1995, 270, 17185-17188. 43.Kaneko, R.; Wada, Y., Decomposition of protein nitrosothiols in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. J. Mass Spectrom. 2003, 38, 526-530. 44.Wang, Y.; Liu, T.; Wu, C.; Li, H., A strategy for direct identification of protein S-nitrosylation sites by quadrupole time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1353-1360. 45.Lee, S. J.; Lee, J. R.; Kim, Y. H.; Park, Y. S.; Park, S. I.; Park, H. S.; Kim, K. P., Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2797-2804. 46.(a) Sun, J. H.; Xin, C. L.; Eu, J. P.; Stamler, J. S.; Meissner, G., Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11158-11162; (b) Matsushita, K.; Morrell, C. N.; Cambien, B.; Yang, S. X.; Yamakuchi, M.; Bao, C.; Hara, M. R.; Quick, R. A.; Cao, W.; O'Rourke, B.; Lowenstein, J. M.; Pevsner, J.; Wagner, D. D.; Lowenstein, C. J., Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimdide-sensitive factor. Cell 2003, 115 , 139-150. 47.Andrew J. Gow.; Christiana W. Davis, D. M. H. I., Immunohistochemical Detection of S-Nitrosylated Proteins. Nitric Oxide Protocols 2004, 279, 167-172. 48.Munson, D. A.; Grubb, P. H.; Kerecman, J. D.; McCurnin, D. C.; Yoder, B. A.; Hazen, S. L.; Shaul, P. W.; Ischiropoulos, H., Pulmonary and systemic nitric oxide metabolites in a baboon model of neonatal chronic lung disease. Am. J. Respir. Cell Mol. Biol. 2005, 33, 582-588. 49.Greco, T. M.; Hodara, R.; Parastatidis, L.; Heijnen, H. F. G.; Dennehy, M. K.; Liebler, D. C.; Ischiropoulos, H., Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 7420-7425. 50.Zhao, Z.; Pompey, S.; Dong, H.; Weng, J.; Garuti, R.; Michaely, P., S-nitrosylation of ARH is required for LDL uptake by the LDL receptor. J. Lipid Res. 2013, 54,1550-1559. 51.Murray, C. I.; Chung, H. S.; Uhrigshardt, H.; Van Eyk, J. E., Quantification of Mitochondrial S-Nitrosylation by CysTMT(6) Switch Assay. Methods Mol. Biol. 2013, 1005, 169-79. 52.(a) Cheng, J.; Valdivia, C. R.; Vaidyanathan, R.; Balijepalli, R. C.; Ackerman, M. J.; Makielski, J. C., Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J. Mol. Cell Cardiol. 2013, 61, 102-110; (b) Grau, M.; Pauly, S.; Ali, J.; Walpurgis, K.; Thevis, M.; Bloch, W.; Suhr, F., RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One 2013, ASAP. 53.Doulias, P. T.; Greene, J. L.; Greco, T. M.; Tenopoulou, M.; Seeholzer, S. H.; Dunbrack, R. L.; Ischiropoulos, H., Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 , 16958-16963. 54.Doulias, P. T.; Tenopoulou, M.; Greene, J. L.; Raju, K.; Ischiropoulos, H., Nitric Oxide Regulates Mitochondrial Fatty Acid Metabolism Through Reversible Protein S-Nitrosylation. Sci. Signal. 2013, 6, 1937-1945. 55.Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007-10. 56.Xian, M.; Wang, H., Chemical methods to detect S-nitrosation. Curr. Opin. Chem .Biol. 2011, 15, 32-37. 57.Wang, H.; Xian, M., Fast reductive ligation of S-nitrosothiols. Angew. Chem. Int. Ed 2008, 47, 6598-6601. 58.Zhang, J.; Wang, H.; Xian, M., Exploration of the "traceless" reductive ligation of S-nitrosothiols. Org. Lett. 2009, 11, 477-480. 59.Zhang, J.; Wang, H.; Xian, M., An unexpected Bis-ligation of S-nitrosothiols. J. Am. Chem. Soc. 2009, 131, 3854-3855. 60.Xian, M.; Zhang, J. M.; Li, S.; Zhang, D. H.; Wang, H.; Whorton, A. R., Reductive Ligation Mediated One-Step Disulfide Formation of S-Nitrosothiols. Org. Lett. 2010, 12 , 4208-4211. 61.Seneviratne, U.; Godoy, L. C.; Wishnok, J. S.; Wogan, G. N.; Tannenbaum, S. R., Mechanism-Based Triarylphosphine-Ester Probes for Capture of Endogenous RSNOs. J. Am. Chem. Soc. 2013, 135, 7693-7704. 62.吳煥婷,國立清華大學化學研究所 博士論文,功能化磁性奈米粒子應用於目標分子純化與偵測,民國99年。 63.周建成,國立清華大學化學研究所 碩士論文,發展磁性奈米探針用以鑑定與純化硫基亞硝基化胜肽,民國100年。 64.Zhang, J.; Li, S.; Zhang, D.; Wang, H.; Whorton, A. R.; Xian, M., Reductive ligation mediated one-step disulfide formation of S-nitrosothiols. Org. Lett. 2010, 12, 4208-4211. 65.Chen, Y. Y.; Huang, Y. F.; Khoo, K. H.; Meng, T. C., Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods 2007, 42, 243-249. 66.Zhang, Z. Y.; Dixon, J. E., Active site labeling of the Yersinia protein tyrosine phosphatase: the determination of the pKa of the active site cysteine and the function of the conserved histidine 402. Biochemistry 1993, 32, 9340-9345. 67.Gregory, J. D., The Stability of N-Ethylmaleimide and Its Reaction with Sulfhydryl Groups. J. Am. Chem. Soc. 1955, 77, 3922-3923. 68.Soellner, M. B.; Nilsson, B. L.; Raines, R. T., Reaction mechanism and kinetics of the traceless Staudinger ligation. J. Am. Chem. Soc. 2006, 128, 8820-8828. 69.(a) Renaud, E.; Russell, R. B.; Fortier, S.; Brown, S. J.; Baird, M. C., Synthesis of a New Family of Water-Soluble Tertiary Phosphine-Ligands and of Their Rhodium(I) Complexes - Olefin Hydrogenation in Aqueous and Biphasic Media. J. Organomet. Chem. 1991, 419, 403-415; (b) Tate, C. W.; Gee, A. D.; Vilar, R.; White, A. J. P.; Long, N. J., Reversible carbon monoxide binding at copper(I) P-S-X (X=N, O) coordination polymers. J. Organomet. Chem. 2012, 715, 39-42. 70.Zhang, W.; Shi, M., Reduction of activated carbonyl groups by alkyl phosphines: formation of alpha-hydroxy esters and ketones. Chem. Commun. 2006, 1218-1220. 71.Moiseev, D. V.; James, B. R., Air-stability of aqueous solutions of (HOCH2)3P and (HOCH2CH2CH2)3P. Inorg. Chim. Acta. 2011, 379, 23-27. 72.Favre, A.; Grugier, J.; Brans, A.; Joris, B.; Marchand-Brynaert, J., 6-Aminopenicillanic acid (6-APA) derivatives equipped with anchoring arms. Tetrahedron 2012, 68, 10818-10826. 73.Myers, E. L.; Raines, R. T., A Phosphine-Mediated Conversion of Azides into Diazo Compounds. Angew. Chem. Int. Ed 2009, 48, 2359-2363. 74.Stankevic, M.; Wojcik, K.; Jaklinska, M.; Pietrusiewicz, K. M., In Situ Dearomatisation/Alkylation of Arylphosphane Derivatives. Eur. J. Org. Chem. 2012, 2521-2534. 75.Lo Conte, M.; Carroll, K. S., Chemoselective Ligation of Sulfinic Acids with Aryl-Nitroso Compounds. Angew. Chem. Int. Ed 2012, 51, 6502-6505. 76.Bang, E. K.; Gasparini, G.; Molinard, G.; Roux, A.; Sakai, N.; Matile, S., Substrate-Initiated Synthesis of Cell-Penetrating Poly(disulfide)s. J. Am. Chem. Soc. 2013, 135, 2088-2091. 77.Muller, G.; Sainz, D., Synthesis of Monohydroxy-Methyl-Phosphine and Monohydroxy-Ethyl-Phosphine Pph(2)Chroh. J. Organomet. Chem. 1995, 495, 103-111.
|