帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊牧軒
論文名稱(中文):發展奈米探針用以快速和專一性純化硫基亞硝基化胜肽
論文名稱(外文):Development of Affinity Nano Probes for Rapid and Specific Enrichment of S-nitrosylated Peptides
指導教授(中文):林俊成
口試委員(中文):陳玉如
林俊宏
林俊成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023576
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:107, 19
中文關鍵詞:硫基亞硝基化胜肽奈米探針親合性探針磁性奈米粒子
外文關鍵詞:S-nitrosylated PeptidesNano ProbesAffinity probesmagnetic nanoparticle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
一氧化氮分子藉由與半胱胺酸上的硫基形成可逆共價鍵結,可調節蛋白質的活性和功能進而影響多種生理機制。本論文的目標是發展便捷的方式從複雜樣品中純化硫基亞硝基胜肽。我們將文獻中兩種硫酯基磷探針與兩種固相載體磁性奈米粒子及珠狀瓊脂糖結合,經由追蹤式還原接合亞硝基化硫基反應,將一級RSNO轉換成相對穩定的雙硫鍵產物,應用於純化和鑑定RSNOs。將亞硝基化標準胜肽PTP1B與BSA複雜樣品混合後,探針可成功的純化出PTP1B,並得知珠狀瓊脂糖在複雜樣品中能夠減少分專一性吸附。使用2nd_TEP@agarose探針,已成功從COS-7細胞間質液中純化出能被亞硝基化的胜肽。硫酯基磷探針在研究亞硝基化蛋白上具有極大的潛力,因此我們接著改變探針結構,合成出另一種硫酯基磷探針,探討結構對RSNO反應性的影響。
Nitric oxide (NO) is covalently attached to cysteine thiols of proteins resulting in the formation of S-nitrosothiols (RSNOs), and regulation of protein activity and function in a wide range of physiological processes. The objectives of this thesis are development of probes for the enrichment of S-nitrosylated peptides. We conjugated two types of thioester phosphine ligand to either magnetic nanoparticle or agarose bead, respectively for identification and purification of RSNOs. Furthermore, through traceless reductive ligation of S-nitrosothiol mechanism the unstable primary RSNOs were converted to stable disulfide-iminophosphorane products. The S-nitrosylated PTP1B peptide mixed with tryptic BSA mixture was successfully captured by developed probe and identified by MALDI-TOF. In addition, the agarose beads show less non-specific interaction to tryptic BSA peptide. The enrichment of S-nitrosylated peptides from COS-7 cell lysate was achieved by 2nd_TEP@agarose. Thus, This strategy is a potential tool for investigate of S-nitrosylation proteins. Furthermore, we synthesized other type of thioester phosphine ligand by changing the original structure and investigate the effect of probe structure on the reactivity to RSNO.
第一章- 序論 1
1.1一氧化氮 1
1.1.2人體內一氧化氮的生成 3
1.2硫基亞硝基化蛋白 7
1.2.1蛋白質亞硝基化 8
1.3奈米粒子載體 9
1.3.1奈米科技的原理 10
1.3.2奈米材料的特性 11
1.3.3磁性奈米粒子 13
1.3.3.1磁性奈米粒子的特性 14
1.3.3.2氧化鐵磁性奈米粒子表面修飾 15
1.3.4珠狀瓊脂糖(Agarose beads) 17
1.4偵測硫基亞硝基化蛋白的方法 18
1.4.1間接檢測法 19
1.4.1.1化學發光法 (Chemiluminescence methods) 19
1.4.1.2比色法 (Colormetry) 20
1.4.1.3螢光法 (Fluorescence) 21
1.4.1.4生物素轉換法(Biotin-switch based methods) 22
1.4.2直接檢測法 (Direct methods) 24
1.4.3直接檢測法-非衍生物法: 25
1.4.3.1質譜法 (Mass spectrometry) 25
1.4.3.2抗體法 (Anti-S-nitrosocysteine antibody methods) 25
1.4.4直接檢測法-衍生物法 26
1.4.4.1金奈米粒子法 (Gold nanoparticles) 26
1.4.2.4有機汞樹酯法 (Organomercury resin capture, MRC) 27
1.4.2.5有機磷直接鍵結法 (Organophosphine based SNO direct labeling) 29
1.4.2.5.1四種反應機制 31
第二章- 專一性探針製備與應用 38
2.1研究動機 38
2.1第一代與第二代磁性奈米探針之合成 (1ST_TEP@MNP & 2nd_TEP@MNP) 40
2.1.1第一代磁性奈米探針的設計 (1ST_TEP@MNP) 41
2.1.2第二代磁性奈米探針的設計 (2nd_TEP@MNP) 42
2.1.2.1連接子鏈之合成(Linker) 44
2.1.2.2第二代磁性探針與第二代珠狀瓊脂糖的製備 46
2.1.2.3磁性奈米粒子表面濃度定量 47
2.2磁性奈米型探針偵測結果與討論 48
2.2.1一般型探針 49
2.2.2標定型磁性探針 52
2.2.2.1標定型磁性探針反應性測試 53
2.2.2.2專一性測試 54
2.2.2.3非專一性吸附討論 55
2.3製備第一代與第二代珠狀瓊脂糖探針(1st_TEP@agarose & 2nd_TEP@agarose) 58
2.3.1第一代珠狀瓊脂糖探針(1st_TEP@agarose) 59
2.3.1.1表面定量 59
2.3.2第二代珠狀瓊脂糖探針(2nd_TEP@agarose) 61
2.3.2.1表面濃度定量 62
2.4珠狀瓊脂糖型探針偵測結果與討論 62
2.4.1專一性測試比較 63
2.4.2偵測極限(Limit of detection) 67
2.4.3 Cos7細胞裂解液(Cell lysate)中反應性測試 68
2.4.4 2nd_TEP@Agarose討論 70
2.5第三代探針設計與製備 71
2.5.1合成第三代-一般型探針 73
2.5.2合成第三代生物素探針 (3rd_TEP@biotine) 74
2.5.3反應性測試 76
2.5.4 還原性測試 77
2.6第四代探針設計與製備 79
2.6.1 利用取代反應策略合成第四代探針 80
2.6.2 開環策略合成第四代探針 81
2.6.3第二代、第三代及第四代探針反應性測試 84
2.7合成二次標定的探針 84
第三章- 結果與討論 86
第四章- 結論與未來展望 89
第五章- 實驗方法 90
5.1 Chemical synthesis 90
5.2 Probes synthesis 104
5.3 Enrichment of nitrosylated the standard peptide 108
參考文獻 111
參考文獻
1. Arnold, W. P.; Mittal, C. K.; Katsuki, S.; Murad, F., Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3203-3207.
2. Bin-Nun, A.; Schreiber, M. D., Role of iNO in the modulation of pulmonary vascular resistance. J. Perinatol. 2008, 28, 84-92.
3. Furchgott, R. F.; Zawadzki, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288 , 373-376.
4. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 9265-9269.
5. Odell, T. J.; Hawkins, R. D.; Kandel, E. R.; Arancio, O., Tests of the Roles of 2 Diffusible Substances in Long-Term Potentiation - Evidence for Nitric-Oxide as a Possible Early Retrograde Messenger. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 11285-11289.
6. Culotta, E.; Koshland, D. E., No News Is Good-News. Science 1992, 258, 1862-1865.
7. Marletta, M. A., Nitric-Oxide Synthase - Aspects Concerning Structure and Catalysis. Cell 1994, 78, 927-930.
8. Nakamura, T.; Lipton, S. A., S-nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding. Cell Death Differ. 2007, 14, 1305-1314.
9. (a) Alderton, W. K.; Cooper, C. E.; Knowles, R. G., Nitric oxide synthases: structure, function and inhibition. Biochem. J. 2001, 357, 593-615; (b) Nussler, A. K.; Billiar, T. R., Inflammation, Immunoregulation, and Inducible Nitric-Oxide Synthase. J. Leukoc. Biol. 1993, 54, 171-178; (c) Wlodek, D.; Gonzales, M., Decreased energy levels can cause and sustain obesity. J. Theor. Biol. 2003, 225, 33-44.
10.Hsiao, H.-Y.; Mak, O.-T.; Yang, C.-S.; Liu, Y.-P.; Fang, K.-M.; Tzeng, S.-F., TNF-α/IFN-γ-induced iNOS expression increased by prostaglandin E2 in rat primary astrocytes via EP2-evoked cAMP/PKA and intracellular calcium signaling. Glia 2007, 55, 214-223.
11.Devarie-Baez, N. O.; Zhang, D.; Li, S.; Whorton, A. R.; Xian, M., Direct methods for detection of protein S-nitrosylation. Methods 2013.ASAP
12. Beigi, F.; Gonzalez, D. R.; Minhas, K. M.; Sun, Q. A.; Foster, M. W.; Khan, S. A.; Treuer, A. V.; Dulce, R. A.; Harrison, R. W.; Saraiva, R. M.; Premer, C.; Schulman, I. H.; Stamler, J. S.; Hare, J. M., Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4314-4319.
13.(a) Kroncke, K. D.; Fehsel, K.; Kolb-Bachofen, V., Nitric oxide: Cytotoxicity versus cytoprotection - How, why, when, and where? Nitric Oxide 1997, 1, 107-120; (b) Yang, Z.; Wang, Z. E.; Doulias, P. T.; Wei, W.; Ischiropoulos, H.; Locksley, R. M.; Liu, L., Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 2010, 185, 6664-6669; (c) Ryu, I. H.; Do, S. I., Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Biochem. Biophys. Res. Commun. 2011, 408, 52-57.
14.(a) Stamler, J. S.; Simon, D. I.; Osborne, J. A.; Mullins, M. E.; Jaraki, O.; Michel, T.; Singel, D. J.; Loscalzo, J., S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 444-448; (b) Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S., Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell. Bio. 2005, 6, 150-166.
15.Cardaci, S.; Filomeni, G.; Ciriolo, M. R., Redox implications of AMPK-mediated signal transduction beyond energetic clues. J. Cell Sci. 2012, 125, 2115-2125.
16.Fang, J.; Nakamura, T.; Cho, D. H.; Gu, Z.; Lipton, S. A., S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18742-18747.
17.Westermann, B., Nitric oxide links mitochondrial fission to Alzheimer's disease. Sci. Signal 2009, 2, 29-37.
18.(a) Bonaventura, C.; Ferruzzi, G.; Tesh, S.; Stevens, R. D., Effects of S-nitrosation on oxygen binding by normal and sickle cell hemoglobin. J. Biol. Chem. 1999, 274, 24742-24748; (b) Foster, M. W.; Hess, D. T.; Stamler, J. S., Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 2009, 15, 391-404.
19.Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z.-Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura, Y.; Lipton, S. A., S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441, 513-517.
20.Kim, Y. M.; Talanian, R. V.; Billiar, T. R., Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 1997, 272, 31138-48.
21.Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758.
22.(a) Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021; (b) Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E., Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 2006, 34, 237-247.
23.(a) Li, Z.; Wei, L.; Gao, M. Y.; Lei, H., One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 2005, 17, 1001-1005; (b) Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, 927-34.
24.(a) Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of optical resonances. Chem. Phys. Lett. 1998, 288, 243-247; (b) Yoza, B.; Arakaki, A.; Matsunaga, T., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J. Biotechnol. 2003, 101, 219-228.
25.Lu, Y.; Yin, Y. D.; Mayers, B. T.; Xia, Y. N., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002, 2, 183-186.
26.Li, D.; Teoh, W. Y.; Gooding, J. J.; Selomulya, C.; Amal, R., Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles. Adv. Funct. Mater. 2010, 20, 1767-1777.
27.(a) Hjerten, S.; Zelikman, I.; Lindeberg, J.; Lederer, M., High-Performance Adsorption Chromatography of Proteins on Deformed Non-Porous Agarose Beads Coated with Insoluble Metal-Compounds .2. Coating - Aluminum and Zirconium (Hydr)Oxide with Stoichiometrically Bound Phosphate. J. Chromatogr. 1989, 481, 187-199; (b) Liao, J. L.; Hjerten, S., High-Performance Liquid-Chromatography of Proteins on Compressed, Non-Porous Agarose Beads .2. Anion-Exchange Chromatography. J. Chromatogr. 1988, 457, 175-182; (c) Hjerten, S.; Zelikman, I.; Lindeberg, J.; Liao, J. I.; Eriksson, K. O.; Mohammad, J., High-Performance Adsorption Chromatography of Proteins on Deformed Non-Porous Agarose Beads Coated with Insoluble Metal-Compounds .1. Coating - Ferric Oxyhydroxide with Stoichiometrically Bound Phosphate. J. Chromatogr. 1989, 481, 175-186; (d) Lahooti, S.; Sefton, M. V., Effect of an immobilization matrix and capsule membrane permeability on the viability of encapsulated HEK cells. Biomaterials 2000, 21, 987-995.
28.Gow, A.; Doctor, A.; Mannick, J.; Gaston, B., S-Nitrosothiol measurements in biological systems. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2007, 851, 140-151.
29.Torta, F.; Usuelli, V.; Malgaroli, A.; Bachi, A., Proteomic analysis of protein S-nitrosylation. Proteomics 2008, 8, 4484-4494.
30.(a) Fang, K.; Ragsdale, N. V.; Carey, R. M.; MacDonald, T.; Gaston, B., Reductive assays for S-nitrosothiols: implications for measurements in biological systems. Biochem. Biophys. Res. Commun. 1998, 252, 535-540; (b) Doctor, A.; Platt, R.; Sheram, M. L.; Eischeid, A.; McMahon, T.; Maxey, T.; Doherty, J.; Axelrod, M.; Kline, J.; Gurka, M.; Gow, A.; Gaston, B., Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 5709-5714.
31.(a) Jia, L.; Bonaventura, C.; Bonaventura, J.; Stamler, J. S., S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control. Nature 1996, 380, 221-226; (b) Stamler, J. S.; Jaraki, O.; Osborne, J.; Simon, D. I.; Keaney, J.; Vita, J.; Singel, D.; Valeri, C. R.; Loscalzo, J., Nitric-Oxide Circulates in Mammalian Plasma Primarily as an S-Nitroso Adduct of Serum-Albumin. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 7674-7677.
32.(a) Hausladen, A.; Privalle, C. T.; Keng, T.; DeAngelo, J.; Stamler, J. S., Nitrosative stress: Activation of the transcription factor OxyR. Cell 1996, 86, 719-729; (b) Eu, J. P.; Sun, J. H.; Xu, L.; Stamler, J. S.; Meissner, G., The skeletal muscle calcium release channel: Coupled O-2 sensor and NO signaling functions. Cell 2000, 102, 499-509.
33.Riccio, D. A.; Nutz, S. T.; Schoenfisch, M. H., Visible Photolysis and Amperometric Detection of S-Nitrosothiols. Anal. Chem. 2012, 84, 851-856.
34.Goto, M.; Sato, K.; Murakami, A.; Tokeshi, M.; Kitamori, T., Development of a microchip-based bioassay system using cultured cells. Anal. Chem. 2005, 77, 2125-2131.
35.Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 1998, 70, 2446-2453.
36.Jaffrey, S. R.; Erdjument-Bromage, H.; Ferris, C. D.; Tempst, P.; Snyder, S. H., Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell. Biol. 2001, 3, 193-197.
37.Liu, M.; Hou, J.; Huang, L.; Huang, X.; Heibeck, T. H.; Zhao, R.; Pasa-Tolic, L.; Smith, R. D.; Li, Y.; Fu, K.; Zhang, Z.; Hinrichs, S. H.; Ding, S. J., Site-specific proteomics approach for study protein S-nitrosylation. Anal. Chem. 2010, 82, 7160-7168.
38.Gao, C.; Guo, H.; Wei, J.; Mi, Z.; Wai, P. Y.; Kuo, P. C., Identification of S-nitrosylated proteins in endotoxin-stimulated RAW264.7 murine macrophages. Nitric Oxide 2005, 12, 121-126.
39.Hao, G.; Derakhshan, B.; Shi, L.; Campagne, F.; Gross, S. S., SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5242-5242.
40.Forrester, M. T.; Thompson, J. W.; Foster, M. W.; Nogueira, L.; Moseley, M. A.; Stamler, J. S., Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 2009, 27, 557-559.
41.Tello, D.; Tarin, C.; Ahicart, P.; Breton-Romero, R.; Lamas, S.; Martinez-Ruiz, A., A "fluorescence switch" technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 2009, 9, 5359-5370.
42.Mirza, U. A.; Chait, B. T.; Lander, H. M., Monitoring Reactions of Nitric-Oxide with Peptides and Proteins by Electrospray-Ionization Mass-Spectrometry. J. Biol. Chem. 1995, 270, 17185-17188.
43.Kaneko, R.; Wada, Y., Decomposition of protein nitrosothiols in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. J. Mass Spectrom. 2003, 38, 526-530.
44.Wang, Y.; Liu, T.; Wu, C.; Li, H., A strategy for direct identification of protein S-nitrosylation sites by quadrupole time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1353-1360.
45.Lee, S. J.; Lee, J. R.; Kim, Y. H.; Park, Y. S.; Park, S. I.; Park, H. S.; Kim, K. P., Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2797-2804.
46.(a) Sun, J. H.; Xin, C. L.; Eu, J. P.; Stamler, J. S.; Meissner, G., Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11158-11162; (b) Matsushita, K.; Morrell, C. N.; Cambien, B.; Yang, S. X.; Yamakuchi, M.; Bao, C.; Hara, M. R.; Quick, R. A.; Cao, W.; O'Rourke, B.; Lowenstein, J. M.; Pevsner, J.; Wagner, D. D.; Lowenstein, C. J., Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimdide-sensitive factor. Cell 2003, 115 , 139-150.
47.Andrew J. Gow.; Christiana W. Davis, D. M. H. I., Immunohistochemical Detection of S-Nitrosylated Proteins. Nitric Oxide Protocols 2004, 279, 167-172.
48.Munson, D. A.; Grubb, P. H.; Kerecman, J. D.; McCurnin, D. C.; Yoder, B. A.; Hazen, S. L.; Shaul, P. W.; Ischiropoulos, H., Pulmonary and systemic nitric oxide metabolites in a baboon model of neonatal chronic lung disease. Am. J. Respir. Cell Mol. Biol. 2005, 33, 582-588.
49.Greco, T. M.; Hodara, R.; Parastatidis, L.; Heijnen, H. F. G.; Dennehy, M. K.; Liebler, D. C.; Ischiropoulos, H., Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 7420-7425.
50.Zhao, Z.; Pompey, S.; Dong, H.; Weng, J.; Garuti, R.; Michaely, P., S-nitrosylation of ARH is required for LDL uptake by the LDL receptor. J. Lipid Res. 2013, 54,1550-1559.
51.Murray, C. I.; Chung, H. S.; Uhrigshardt, H.; Van Eyk, J. E., Quantification of Mitochondrial S-Nitrosylation by CysTMT(6) Switch Assay. Methods Mol. Biol. 2013, 1005, 169-79.
52.(a) Cheng, J.; Valdivia, C. R.; Vaidyanathan, R.; Balijepalli, R. C.; Ackerman, M. J.; Makielski, J. C., Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J. Mol. Cell Cardiol. 2013, 61, 102-110; (b) Grau, M.; Pauly, S.; Ali, J.; Walpurgis, K.; Thevis, M.; Bloch, W.; Suhr, F., RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One 2013, ASAP.
53.Doulias, P. T.; Greene, J. L.; Greco, T. M.; Tenopoulou, M.; Seeholzer, S. H.; Dunbrack, R. L.; Ischiropoulos, H., Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 , 16958-16963.
54.Doulias, P. T.; Tenopoulou, M.; Greene, J. L.; Raju, K.; Ischiropoulos, H., Nitric Oxide Regulates Mitochondrial Fatty Acid Metabolism Through Reversible Protein S-Nitrosylation. Sci. Signal. 2013, 6, 1937-1945.
55.Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007-10.
56.Xian, M.; Wang, H., Chemical methods to detect S-nitrosation. Curr. Opin. Chem .Biol. 2011, 15, 32-37.
57.Wang, H.; Xian, M., Fast reductive ligation of S-nitrosothiols. Angew. Chem. Int. Ed 2008, 47, 6598-6601.
58.Zhang, J.; Wang, H.; Xian, M., Exploration of the "traceless" reductive ligation of S-nitrosothiols. Org. Lett. 2009, 11, 477-480.
59.Zhang, J.; Wang, H.; Xian, M., An unexpected Bis-ligation of S-nitrosothiols. J. Am. Chem. Soc. 2009, 131, 3854-3855.
60.Xian, M.; Zhang, J. M.; Li, S.; Zhang, D. H.; Wang, H.; Whorton, A. R., Reductive Ligation Mediated One-Step Disulfide Formation of S-Nitrosothiols. Org. Lett. 2010, 12 , 4208-4211.
61.Seneviratne, U.; Godoy, L. C.; Wishnok, J. S.; Wogan, G. N.; Tannenbaum, S. R., Mechanism-Based Triarylphosphine-Ester Probes for Capture of Endogenous RSNOs. J. Am. Chem. Soc. 2013, 135, 7693-7704.
62.吳煥婷,國立清華大學化學研究所 博士論文,功能化磁性奈米粒子應用於目標分子純化與偵測,民國99年。
63.周建成,國立清華大學化學研究所 碩士論文,發展磁性奈米探針用以鑑定與純化硫基亞硝基化胜肽,民國100年。
64.Zhang, J.; Li, S.; Zhang, D.; Wang, H.; Whorton, A. R.; Xian, M., Reductive ligation mediated one-step disulfide formation of S-nitrosothiols. Org. Lett. 2010, 12, 4208-4211.
65.Chen, Y. Y.; Huang, Y. F.; Khoo, K. H.; Meng, T. C., Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods 2007, 42, 243-249.
66.Zhang, Z. Y.; Dixon, J. E., Active site labeling of the Yersinia protein tyrosine phosphatase: the determination of the pKa of the active site cysteine and the function of the conserved histidine 402. Biochemistry 1993, 32, 9340-9345.
67.Gregory, J. D., The Stability of N-Ethylmaleimide and Its Reaction with Sulfhydryl Groups. J. Am. Chem. Soc. 1955, 77, 3922-3923.
68.Soellner, M. B.; Nilsson, B. L.; Raines, R. T., Reaction mechanism and kinetics of the traceless Staudinger ligation. J. Am. Chem. Soc. 2006, 128, 8820-8828.
69.(a) Renaud, E.; Russell, R. B.; Fortier, S.; Brown, S. J.; Baird, M. C., Synthesis of a New Family of Water-Soluble Tertiary Phosphine-Ligands and of Their Rhodium(I) Complexes - Olefin Hydrogenation in Aqueous and Biphasic Media. J. Organomet. Chem. 1991, 419, 403-415; (b) Tate, C. W.; Gee, A. D.; Vilar, R.; White, A. J. P.; Long, N. J., Reversible carbon monoxide binding at copper(I) P-S-X (X=N, O) coordination polymers. J. Organomet. Chem. 2012, 715, 39-42.
70.Zhang, W.; Shi, M., Reduction of activated carbonyl groups by alkyl phosphines: formation of alpha-hydroxy esters and ketones. Chem. Commun. 2006, 1218-1220.
71.Moiseev, D. V.; James, B. R., Air-stability of aqueous solutions of (HOCH2)3P and (HOCH2CH2CH2)3P. Inorg. Chim. Acta. 2011, 379, 23-27.
72.Favre, A.; Grugier, J.; Brans, A.; Joris, B.; Marchand-Brynaert, J., 6-Aminopenicillanic acid (6-APA) derivatives equipped with anchoring arms. Tetrahedron 2012, 68, 10818-10826.
73.Myers, E. L.; Raines, R. T., A Phosphine-Mediated Conversion of Azides into Diazo Compounds. Angew. Chem. Int. Ed 2009, 48, 2359-2363.
74.Stankevic, M.; Wojcik, K.; Jaklinska, M.; Pietrusiewicz, K. M., In Situ Dearomatisation/Alkylation of Arylphosphane Derivatives. Eur. J. Org. Chem. 2012, 2521-2534.
75.Lo Conte, M.; Carroll, K. S., Chemoselective Ligation of Sulfinic Acids with Aryl-Nitroso Compounds. Angew. Chem. Int. Ed 2012, 51, 6502-6505.
76.Bang, E. K.; Gasparini, G.; Molinard, G.; Roux, A.; Sakai, N.; Matile, S., Substrate-Initiated Synthesis of Cell-Penetrating Poly(disulfide)s. J. Am. Chem. Soc. 2013, 135, 2088-2091.
77.Muller, G.; Sainz, D., Synthesis of Monohydroxy-Methyl-Phosphine and Monohydroxy-Ethyl-Phosphine Pph(2)Chroh. J. Organomet. Chem. 1995, 495, 103-111.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *