帳號:guest(3.144.254.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊鈺德
作者(外文):Zhuang, Yu-De
論文名稱(中文):可選擇性的進行蛋白質與磺胺類藥物檢測之 對環境敏感螢光探針
論文名稱(外文):Environment-sensitive Fluorescent Probes for The Selective Detection of Proteins and Sulfa Drugs
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):洪嘉呈
許馨云
陳貴通
口試委員(外文):Horng, Jia-cheng
Hsu, Shin-Yun
Tan, Kui-Thong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023572
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:197
中文關鍵詞:對環境敏感螢光分子蛋白質磺胺類藥物螢光探針生物感測器
外文關鍵詞:environment-sensitive fluorophoreproteinssulfa drugsfluorescent probesbiosensors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1049
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
有鑒於現代生物與醫學研究發展,可應用於活體細胞內並可專一的檢測蛋白質與特定代謝物非常重要,其濃度在活體細胞內隨代謝活動與生理作用時常變化,研究其變化有助於間接探知活體細胞生理真正的面貌。本實驗皆以對環境敏感分子處於親疏水相中的螢光變化作為訊號開關機理,分別針對蛋白質與代謝物設計一種新型的感測器。
蛋白質檢測方法係以會被水焠熄之對環境敏感螢光分子 SBD 之衍生物結合目標蛋白質專一辨識的嵌合基團做為探針架構,運用蛋白質結構內部普遍較為疏水的特性。當探針結合目標蛋白質,螢光分子將處在疏水環境中,產生強烈螢光訊號,利用此螢光訊號變化量間接得知樣品中蛋白質的含量。本實驗成功以人體碳酸酐酶 (hCA)、胰蛋白酶 (trypsin)、卵白素 (avidin) 與其所對應的嵌合基團對位苯磺胺、對位苄脒 (para-benzamidine) 與生物素 (biotin) 衍生之探針進行此檢測概念的演示,探針合成容易且其螢光增益最高可達 16 倍。
代謝物檢測方法係利用半合成式生物感測器模式,以生物轉殖方法合成重組蛋白 SNAP-hCA,另以有機合成方法合成探針 BG-linker-SBD-SA,以 SNAP-tag 標記技術專一的辨認 BG 基團並將探針標記於 hCA。分子內作用使探針前端的苯磺胺 (SA) 與 hCA 結合並因螢光分子進入 hCA 內部產生螢光。當待測樣品中存在磺胺時,將會競爭性的結合 hCA 並使探針離開活性中心游離至蛋白外,螢光將被焠熄,利用此訊號變化量可反推樣品中的磺胺濃度,最高可達 4.2 倍。
兩種檢測方法均具有普遍性,更換對應蛋白質與探針嵌合基團即可檢測不同蛋白質或代謝物;優化部分亦僅需對有機合成探針進行衍生物合成,極具應用潛力。
Protein, metabolite and drug molecule detection is important in medical diagnosis as well as in biology to investigate cellular processes. Fluorescent probes which can detect specific proteins and small molecules are particularly valuable as they allow for sensitive, simple and specific detection with high signal-to-background ratios. In this thesis, we introduce two new general approaches to generate fluorescent sensor for the selective detection of proteins and small molecules, respectively.
Currently most of the small molecule fluorescent turn-on probes are designed for monitoring enzyme activities, e.g., glycosidases, proteases, lactamases and kinases. Typically, their fluorescence turn-on mechanism is based on the enzymatic reaction with the chemical probes to convert the non-fluorescence substrate into the fluorescence product. On the other hand, the design of fluorescence probes for non-enzymatic proteins remains a challenging task. In the first part of the thesis, we introduce a new type of fluorescent turn-on probes, where a small molecule ligand is conjugated to an environment-sensitive SBD fluorophore, for the selective detection of both enzymes and non-enzymatic proteins. The fluorescent turn-on mechanism is based on the binding of the ligand to a hydrophobic ligand binding domain of the target protein whereby the close proximity to the hydrophobic environment can influence the environment-sensitive fluorophore to exhibit stronger fluorescence. Our new fluorescent probe design is modular and versatile as illustrated by the three fluorescent probes synthesized based on this design for the specific detection of hCAII, trypsin and avidin with fluorescent turn-on ratios of up to 17-fold.
In the second part of the thesis, we describe a novel semisynthetic fluorescent sensor for the selective detection of sulfa drugs. The semisynthetic sensor is to mimic open and closed conformation of the periplasmic binding protein upon substrate binding. Covalent labeling of the synthetic sulfonamide inhibitor and environment-sensitive SBD-dye conjugate to the HCAII enzyme was achieved by introducing a self-labeling protein SNAP-tag to HCAII to facilitate quantitative and site-specific labeling via benzylguanine (BG) moiety. We have successfully demonstrated that addition of synthetic molecule to the sensor protein SNAP_HCAII can achieve a fluorescence intensity increase of more than 10-fold. Subsequent addition of sulfonamide drugs to the semisynthetic fluorescent sensor reverses the SBD-dye to its initial non-fluorescent state. This semisynthetic fluorescent sensor has been applied in the detection of several sulfonamide drugs, such as ethoxzolamide and acetazolamide.
The two fluorescent sensors described in this thesis provide a general approach for the selective detection of proteins, metabolites and drug molecules. We believe that these novel fluorescent probe designs will be a very useful approach for a wide range of applications, such as diagnosis and molecular imaging where high fluorescent signal change and simple detection methods are required.
摘要 i
Abstract ii
謝誌 iii
著作列表 iv
目錄 v
第一章 緒論 1
§1-1 酶與非酶蛋白質 1
§1-2 代謝物 4
§1-2.1 一般代謝物 4
§1-2.2 磺胺類藥物 6
§1-3 對環境敏感之螢光分子 8
§1-4 生物感測器 11
§1-4.1 概述 11
§1-4.2 辨識單元 12
§1-4.3 信號轉換器 15
§1-4.4 固定方法 16
§1-5 實驗動機及目的 17
Part 1. 選擇性蛋白質檢測 19
第二章 文獻回顧與設計構想 20
§2-1 近代選擇性蛋白質檢測方法 20
§2-1.1 小分子酶活性感測器 20
§2-1.2 高分子型奈米粒子近紅外光蛋白質感測器 23
§2-1.3 適體信標式蛋白質螢光感測器 25
§2-1.4 量子點式蛋白酶活性螢光感測器 26
§2-1.5 金奈米粒子酶感測器 28
§2-1.6 螢光蛋白式酶感測器 29
§2-1.7 自組裝式蛋白質螢光感測器 30
§2-2 檢測方法的限制 32
§2-3 針對蛋白質檢測之探針設計構想 33
§2-3.1 對環境敏感螢光分子選擇 34
§2-3.2 探針合成設計與策略 34
第三章 選擇性蛋白質檢測-實驗結果與討論 36
§3-1 選擇性蛋白質檢測 36
§3-1.1 以人類碳酸酐酶 II 檢測建立模型 37
§3-1.2 模型應用於胰蛋白酶檢測 56
§3-1.3 卵白素檢測應用 62
§3-2 實驗結論 69
Part 2. 磺胺類藥物之生物感測器 70
第四章 文獻回顧與設計構想 71
§4-1 近代特定小分子代謝物檢測 71
§4-1.1 週質結合蛋白質變構式生物感測器 71
§4-1.2 螢光蛋白式生物感測器 73
§4-1.3 適體開關探針 75
§4-1.4 螢光受質式代謝物感測器 77
§4-1.5 量子點式代謝物感測器 78
§4-1.6 金奈米粒子式代謝物感測器 79
§4-1.7 半合成代謝物螢光生物感測器 81
§4-2 檢測方法的限制 82
§4-3 針對小分子代謝物偵測之生物感測器設計構想 83
§4-3.1 探針合成策略 85
§4-3.2 生物感測器合成策略 86
§4-3.3 SNAP-tag 標記技術 87
第五章 實驗結果與討論 89
§5-1 磺胺類藥物檢測 89
§5-2 實驗結論 100
第六章 論文總結 101
第七章 實驗部分 102
§7-1 一般實驗方法 102
§7-2 化合物合成方法與光譜資料 104
參考文獻 136
附錄 141
1. Bairoch, A., Nucleic Acids Res., 2000, 28, 304-305.
2. Radzicka, A., Wolfenden, R., Science, 1995, 267, 90.
3. Dunphy, J.; Linder, M., Biochim. Biophys. Acta, 1998, 1436, 245-261.
4. Sorbi, D.; Boynton, J.; Lindor, K. D., Am. J. Gastroenterol., 1999, 94, 1018-1022.
5. (a) O'Malley, J. P.; Maslen, C. L.; Illingworth, D. R., Curr. Opin. Lipidol., 1999, 101, 407-416. (b) Rybakowski, J., Cardiovasc. Psychiatry Neurol., 2009.
6. (a) Selkoe, D. J., Physiol. Rev., 2001, 81, 741-766 (b) Cole, S.; Vassar, R., Mol. Neurodegener., 2007, 2, 22.
7. Tisch, R.; McDevitt, H., Cell, 1996, 85, 291-297.
8. Dahlqvist, A., J. Clin. Invest., 1962, 41, 463.
9. (a) Frank, J. E., Am. Fam. Physician., 2005, 72, 1277. (b) Raupp, P.; Hassan, J. A.; Varughese, M.; Kristiansson, B., Arch. Dis. Child., 2001, 85, 411-412.
10. (a) Hirschhorn, R.; Vawter, G. F.; Kirkpatrick Jr, J. A.; Rosen, F. S., Clin. Immunol. Immunopathol., 1979, 14, 107-120. (b) Arredondo-Vega, F. X.; Santisteban, I.; Daniels, S.; Toutain, S.; Hershfield, M. S., Am. J. Hum. Gen., 1998, 63, 1049-1059.
11. Lin, K.; Perni, R. B.; Kwong, A. D.; Lin, C., Antimicrob. Agents Chemother., 2006, 50, 1813-1822.
12. Edwards, D. R.; Murphy, G., Nature, 1998, 394, 527-528.
13. (a) Lew, W.; Chen, X.; Kim, C. U., Curr. Med. Chem., 2000, 7, 663-672. (b) Huang, I. C; Li, W., Sui, J.; Marasco, W.; Choe, H.; Farzan, M., J. Virol., 2008, 82, 4834-4843.
14. Dixon, S. C.; Knopf, K. B.; Figg, W. D., Pharmacol. Rev., 2001, 53, 73-92.
15. Greider, C. W.; Blackburn, E. H., Cell, 1985, 43, 405-413.
16. Tung, C.-H., Biopolymers, 2004, 76, 391-403.
17. Stockholm, D.; Bartoli, M.; Sillon, G.; Bourg, N.; Davoust, J.; Richard, I., J. Mol. Biol., 2005, 346, 215-222.
18. Dimroth, P.; Christoph von Ballmoos, T. M., EMBO reports, 2006. 7, 276-282.
19. Fraenkel, G. S., Science, 1959, 129, 1466-1470.
20. Wishart, D. S., Nucleic Acids Res., 2009, 37, D603-D610.
21. Sassone-Corsi, P.; Nakahata, Y.; Sahar, S.; Astarita, G.; Kaluzova, M., Science , 2009, 324, 654-657.
22. (a) Duarte, J. D.; Cooper-DeHoff, R. M., Expet. Rev. Cardiovasc. Ther., 2010, 8, 793-802. (b) Serrano-Martín, X.; Payares, G.; Mendoza-León, A., Antimicrob. Agents Chemother., 2006, 50, 4214-4216. (c) Sartor, G.; Scherstén, B.; Carlström, S.; Melander, A.; Nordén, Å.; Persson, G., Diabetes, 1980, 29, 41-49. (d) Ma, M.; Cheng, Y.; Xu, Z.; Xu, P.; Qu, H.; Fang, Y.; Xu, T.; Wen, L., Eur. J. Med. Chem., 2007, 42, 93-98.
23. (a) Stokstad, E. L., & Koch, J., Physiol. rev., 1967, 47, 83-116. (b) Triglia, T.; Cowman, A. F., Drug. Resist. Updat., 1999, 2, 15-19.
24. (a) Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006. (b) Loving, G. S.; Sainlos, M.; Imperiali B., Trends Biotechnol., 2010, 28, 73.
25. (a) Stryer, L., J. Mol. Biol., 1965, 13, 482-495 (b) Tu, S.-C.; Hastings, J. W., Biochemistry, 1975, 14, 4310-4316.
26. Li, Y.-H.; Chan, L.-M.; Tyer, L.; Moody, R. T.; Himel, C. M.; Hercules, D. M., J. Am. Chem. Soc., 1975, 97, 3118-3126.
27. (a) Fery-Forgues, S.; Fayet, J.-P.; Lopez, A., J. Photochem. Photobiol. A, 1993, 70, 229-243. (b) Uchiyama, S.; Santa, T.; Imai, K., J. Chem. Soc. Perkin Trans. 2, 1999, 2525-2532.
28. Diwu, Z.; Lu, Y.; Zhang, C.; Klaubert, D. H.; Haugland, R. P., Photochem. Photobiol., 1997, 66 (4), 424-431.
29. Weber, G.; Farris, F. J., Biochemistry, 1979, 18, 3075 -3078.
30. Haugland, R.P., The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Molecular Probes, 2005.
31. Toutchkine, A.; Kraynov, V.; Hahn, K., J. Am. Chem. Soc., 2003, 125, 4132-4145.
32. (a) Kalyanasundaram, K.; Thomas, J. K., J. Am. Chem. Soc., 1977, 99, 2039-2044. (b) Uchiyama, S.; Takehira, K.; Yoshihara, T.; Tobita, S.; Ohwada, T., Org. Lett., 2006, 8, 5869-5872; (c) Toro, C.; Thibert, A.; De Boni, L.; Masunov, A. E.; Hern_ndez, F. E., J. Phys. Chem. B, 2008, 112, 929-937.
33. (a) Uchiyama, S.; Santa, T.; Okiyama, N.; Fukushima, T.; Imai, K., Biomed. Chromatogr., 2001, 15, 295-318. (b) Santa, T.; Fukushima, T.; Ichibangase, T.; Imai, K., Biomed. Chromatogr., 2008, 22, 343-353.
34. Uchiyama, S.; Kimura, K.; Gota, C.; Okabe, K.; Kawamoto, K.; Inada, N.; Yoshihara, T.; Tobita, S., Chem. Eur. J., 2012, 18, 9552-9563.
35. (a) Newman, J. D.; Turner, A. P., Biosens. Bioelectron., 2005, 20, 2435-2453. (b) Turner, A. P., Chem. Soc. Rev., 2013, 42, 3184-3196.
36. 周淑芬; 陳建源, Chemistry, 2001, 59.
37. (a) Swain, A., Biosensors : a new realism, 1992. (b) Cooper, J. M.; Cass, A. E.G., Biosensors – A Pratical Approach 2nd Ed, 2003.
38. Xing, B.; Khanamiryan, A.; Rao, J., J. Am. Chem. Soc., 2005, 127, 4158-4159.
39. Tung, C. H.; Zeng, Q.; Shah, K.; Kim, D. E.; Schellingerhout, D.; Weissleder, R., Cancer research, 2004, 64, 1579-1583.
40. Fujikawa, Y.; Urano, Y.; Komatsu, T.; Hanaoka, K.; Kojima, H.; Terai, T.; Inoue, H. ; Nagano, T., J. Am. Chem. Soc., 2008, 130, 14533-14543.
41. Chen, G.; Yee, D. J.; Gubernator, N. G.; Sames, D., J. Am. Chem. Soc., 2005, 127, 4544-4545.
42. Kim, K.; Lee, M.; Park, H.; Kim, J. H.; Kim, S.; Chung, H.; Choi, K.; Kim, I. S.; Seong, B. L. ; Kwon, I. C., J. Am. Chem. Soc., 2006, 128, 3490-3491.
43. (a) Tuerk, C.; Gold, L., Science, 1990, 249, 505-510. (b) Ellington, A. D.; Szostak, J. W., Nature, 1990, 346, 818-822.
44. Oh, K. J.; Cash, K. J.; Plaxco, K. W., Chem. Eur. J. 2009, 15, 2244-2251.
45. Thurley, S.; Röglin, L.; Seitz, O., J. Am. Chem. Soc., 2007, 129, 12693-12695.
46. Oh, K. J.; Cash, K. J.; Plaxco, K. W., J. Am. Chem. Soc., 2006, 128, 14018-14019.
47. (a) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Science, 2005, 307, 538-544. (b) Alivisatos, P., Nat.Biotec hnol., 2004, 22, 47-52. (c) Chan, W. C. W.; Nie, S. M., Science, 1998, 281, 2016-2018. (d) Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L.W. K.; Nie, S. M., Nat.Biotechnol., 2004, 22, 969-976.
48. Choi, J. H.; Chen, K. H.; Strano, M. S., J. Am. Chem. Soc., 2006, 128, 15584-15585.
49. Yao, H.; Zhang, Y.; Xiao, F.; Xia, Z.; Rao, J., Angew. Chem. Int. Ed., 2007, 46, 4346-4349.
50. De, M.; Ghosh, P. S.; Rotello, V. M., Adv. Mater., 2008, 20, 4225-4241.
51. Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S., Nano Lett., 2003, 3, 1087-1090.
52. Laromaine, A.; Koh, L., Murugesan, M.; Ulijn, R. V.; Stevens, M. M., J. Am. Chem. Soc., 2007, 129, 4156-4157.
53. Sapsford, K. E.; Berti, L.; Medintz, I. L., Angew. Chem. Int. Ed., 2006, 45, 4562-4589.
54. Periasamy, A., J. Biomed. Opt., 2001, 6, 287-291.
55. Mahajan, N. P.; Corinne Harrison-Shostak, D.; Michaux, J.; Herman, B., Chem. Biol., 1999, 6, 401-409.
56. Felber, L. M.; Cloutier, S. M.; Kundig, C.; Kishi, T.; Brossard, V.; Jichlinski, P.; Leisinger, H. J.; Deperthes, D., Biotechniques, 2004, 36, 878-885.
57. Mizusawa, K.; Ishida, Y.; Takaoka, Y.; Miyagawa, M.; Tsukiji, S.; Hamachi, I., J. Am. Chem. Soc., 2010, 132, 7291-7293.
58. Mizusawa, K.; Takaoka, Y.; Hamachi, I., J. Am. Chem. Soc., 2012, 134, 13386-13395.
59. (a) Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Proc. Natl. Acad. Sci. USA, 2007, 104, 808. (b) Snyder, P. W.; Mecinović, J.; Moustakas, D. T.; Thomas, S. W.; Harder, M.; Mack, E. T.; Lockett, M. R.; Héroux, A. Sherman, W.; Whitesides, G. M. Proc. Natl. Acad. Sci. USA, 2011, 108, 17889.
60. (a) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M., Chem. Rev., 2008, 108, 946. (b) Boriack-Sjodin, P. A.; Zeitlin, S.; Chen, H.-H.; Crenshaw, L.; Gross, S.; Dantanarayana, A.; Delgado, P.; May, J. A.; Dean, T.; Christianson, D. W., Protein Sci., 1998, 7, 2483.
61. (a) Toyo`oka, T.; Imai, K., Anal. Chem., 1984, 56, 2461-2464. (b) Uchiyama, S.; Santa, T.; Imai, K., J. Chem. Soc. Perkin Trans. 2, 1999, 2525 -2532.
62. Su, G.; Liu, Z.; Xie, Z.; Qian, F.; He, W.; Guo, Z., Dalton Trans., 2009, 38, 7888-7890.
63. (a) Fery-Forgues, S.; Vidal, C.; Lavabre, D., J. Chem. Soc., Perkin Trans. 2, 1996, 73-77. (b) Uchiyama, S.; Santa, T.; Imai, K., J. Chem. Soc., Perkin Trans. 2, 1999, 2525-2532.
64. Fujita, T., J. Med. Chem., 1972, 15, 1049-1056.
65. Talhout, R.; Villa, A.; Mark, A. E.; Engberts, J., J. Am. Chem. Soc., 2003, 125, 10570.
66. Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L., Proc. Natl. Acad. Sci. USA, 1993, 90, 5076.
67. Tam, R.; Saier, M. H., Microbiol. Rev., 1993, 57, 320-346.
68. Hellinga, H. W.; Marvin, J. S., Trends Biotechnol. , 1998, 16, 183-189.
69. Scognamiglio, V.; Aurilia, V.; Cennamo, N.; Ringhieri, P.; Iozzino, L.; Tartaglia, M.; Staiano, M.; Ruggiero, G.; Orlando, P.; Labella, T.; Zeui, L.; Vitale, A.; D’Auria, S., Sensors, 2007, 7, 2484-2491.
70. De Lorimier, R. M.; Smith, J. J.; Dwyer, M. A.; Looger, L. L.; Sali, K. M.; Paavola, C. D.; Rizk, S.S.; Sadigov, S.; Conran, D. W.; Loew, L.; Hellinga, H. W., Protein Sci., 2002, 11, 2655-2675.
71. Okumoto, S.; Looger, L. L.; Micheva, K. D.; Reimer, R. J.; Smith, S. J.; Frommer, W. B., Proc. Natl. Acad. Sci., 2005, 102, 8740-8745.
72. (a) Nakai, J.; Ohkura, M.; Imoto, K., Nature biotechnology, 2001, 19, 137-141. (b) Tallini, Y. N.; Ohkura, M.; Choi, B. R.; Ji, G.; Imoto, K.; Doran, R.; Lee, J.; Plan, P.; Wilson, J.; Xin, H. B.; Sanbe, A.; Gulick, J.; Mathai, J.; Robbins, J.; Salame, G.; Nakai, J.; Kotlikoff, M. I., Proc. Natl. Acad. Sci., 2006, 103, 4753-4758.
73. Nausch, L. W.; Ledoux, J.; Bonev, A. D.; Nelson, M. T.; Dostmann, W. R., Proc. Natl. Acad. Sci., 2008, 105, 365-370.
74. Tang, Z.; Mallikaratchy, P.; Yang, R.; Kim, Y.; Zhu, Z.; Wang, H.; Tan, W., J. Am. Chem. Soc., 2008, 130, 11268-11269.
75. Baker, B. R.; Lai, R. Y.; Wood, M. S.; Doctor, E. H.; Heeger, A. J.; Plaxco, K. W., J. Am. Chem. Soc., 2006, 128, 3138-3139.
76. Karton-Lifshin, N.; Segal, E.; Omer, L.; Portnoy, M.; Satchi-Fainaro, R.; Shabat, D., J. Am. Chem. Soc., 2011, 133, 10960-10965.
77. Chen, Z., Li, G.; Zhang, L.; Jiang, J.; Li, Z.; Peng, Z.; Deng, L., Anal. Bioanal. Chem., 2008, 392, 1185-1188.
78. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M., Nat. Mater., 2003, 2, 630-638.
79. (a) Li, H.; Rothberg, L., Proc. Natl. Acad. Sci. USA, 2004, 101, 14036. (b) Li, H.; Rothberg, L. J., J. Am. Chem. Soc., 2004, 126, 10958.
80. Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.; Fan, C., Adv. Mater., 2007, 19, 3943-3946.
81. Zhang, J.; Wang, L.; Pan, D.; Song, S.; Boey, F. Y.; Zhang, H.; Fan, C., Small, 2008, 4, 1196-1200.
82. Brun, M. A.; Tan, K. T.; Nakata, E.; Hinner, M. J.; Johnsson, K., J. Am. Chem. Soc., 2009, 131, 5873-5884.
83. Shih, P. M.; Liu, T. K.; Tan, K. T., Chem. Commun., 2013, 49, 6212-6214.
84. (a) Duguid, E. M.; Rice, P. A.; He, C., J. Mol. Biol., 2005, 350, 657-666. (b) Kufer, S.; Dietz, H.; Albrecht, C.; Blank, K.; Kardinal, A.; Rief, M.; Gaub, H., Eur. Biophys. J., 2005, 35, 72-78.
85. 施柏銘,國立清華大學碩士論文,2012。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *