帳號:guest(18.117.101.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡沂晉
論文名稱(中文):設計及合成抗「諾羅病毒」之新型「蘇拉明」衍生物
論文名稱(外文):Design and Synthesis of Suramin Derivatives as New Anti–Noroviral Agents
指導教授(中文):胡紀如
口試委員(中文):洪嘉呈
蔡淑貞
蔡福源
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023571
出版年(民國):102
畢業學年度:101
語文別:中文英文
論文頁數:57
中文關鍵詞:蘇拉明諾羅病毒NF023磺酸鈉化合物硫脲化合物
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
「諾羅病毒」(Norovirus)是一個27–38 nm的「非包膜病毒」,屬於「杯狀病毒科」(Caliciviridae) 「諾羅病毒屬」(Norovirus),在人類的所有年齡層裡,由「諾羅病毒」所引起之急性腸胃炎極為普遍,在全美爆發的急性腸胃炎大約有50%是由「諾羅病毒」所引起,其中由非細菌所引起的腸胃炎,「諾羅病毒」更占了90%。「諾羅病毒」的傳染力以及發病症狀非常驚人,但目前尚無疫苗可預防也無有效的抗病毒藥物可治療,因此全球對於發展出有效的抗「諾羅病毒」之藥物具急迫性。
本實驗室與義大利「米蘭大學」的Bolognesi 教授團隊合作,設計出有效抗「諾羅病毒」之新型「蘇拉明」衍生物,並利用兩步縮合反應、兩步氫化反應及耦合反應,成功合成出五個新型之「磺酸鈉」衍生物。
藉由核磁共振儀、紅外光光譜儀及高解析質譜儀證實已成功得到「蘇拉明」衍生物,此全合成總共有五個步驟,總產率為46%。並測試其「水溶性」及「脂溶性」,探討其結構對「水溶性」及「脂溶性」的影響,冀其在相同的活性下,能夠更容易進入細胞內,達到提升對抗「諾羅病毒」之更佳效用。
目 錄
中文摘要 ………………………………………...…………………...…… i
英文摘要 …………………………………………...……………...……… ii
謝誌 …………………………………………………...……………...…... iii
目錄 ……………………………………………………...………......…… iv
圖目錄 ……………………………………………...…………….…...….. vi
表目錄 ……………………………………………...…….……….…….. viii
一、 緒論 ………………………………………………………...…….. 1
二、 結果 …………………………………………………..……...…… 6
2-1 合成4-4'-(Carbonylbis[imino-3,1-phenylenecarbonylimino
(4-methy-3,1-phenylene)carbonylimino])bis-1,5-
naphthalenedisulfonic Acid Tetrasodium Salt (8) ................. 6
2-2 利用光譜鑑定「磺酸鈉化合物」3、4、6和7 ............….. 8
2-3 利用光譜鑑定「蘇拉明」衍生物8 .................................. 13
2-4 「磺酸鈉化合物」和「蘇拉明」之
「水溶性」和「脂溶性」測試 ......................................... 15
三、 討論 ………………………………………………………...…… 18
3-1 調整pH值對合成「磺酸鈉化合物」 3、6和8之重要性 .... 18
3-2 合成「蘇拉明」衍生物8選擇三光氣之探討 .................. 19

3-3 合成「硫脲化合物」9之探討 .......................................... 20
3-4 合成不對稱「尿素化合物」15之探討 ............................ 22
四、 結論 ……………………………………………………….......… 26
五、 實驗部分 ……………………………………………………...… 27
六、 參考文獻 ………………………………………………………... 34
七、 光譜 …………………………………………………………...… 41

圖 目 錄
圖1. 電子顯微鏡觀測 「諾羅病毒」 之圖像 ......................................... 1
圖2. 「蘇拉明」與「諾羅病毒」酵素RdRp之作用圖 .......................... 3
圖3. 「蘇拉明」結構圖 ........................................................................... 3
圖4. NF023結構圖 ................................................................................. 4
圖5. NF023與「諾羅病毒」聚合酶交互作用之結構圖 ..................... 5
圖6. NF023與「諾羅病毒」聚合酶交互作用之位置圖 ..................... 5
圖7. 「蘇拉明」衍生物8的全合成 ..................................................... 6
圖8. 「硝基苯化合物」3的IR光譜 .................................................... 9
圖9. 比較「硝基苯化合物」3和「苯胺化合物」4的1H NMR光譜 .. 10
圖10. 比較「苯胺化合物」4和「硝基苯化合物」6的1H NMR光譜 .. 11
圖11. 「硝基苯化合物」6的IR光譜 ................................................... 11
圖12. 比較「硝基苯化合物」6和「苯胺化合物」7的1H NMR光譜 .. 12
圖13. 比較「苯胺化合物」7和「蘇拉明」衍生物8的1H NMR光譜 .. 14
圖14. 比較「苯胺化合物」7和「蘇拉明」衍生物8的13C NMR光譜 .. 14
圖15. 「硫脲化合物」9之結構圖 ........................................................... 20
圖16. 「硫脲化合物」9之合成 ............................................................... 21
圖17. 「異硫氰酸酯」化合物10之質譜圖 ............................................ 22
圖18. 「異硫氰酸酯」化合物10之結構圖 ............................................ 22
圖19. 「尿素化合物」15之合成 ............................................................. 23
圖20. 「二聚化合物」16之結構圖 ......................................................... 24

表 目 錄
表1. 五種「磺酸鈉化合物」和「蘇拉明」的「水溶性」 ....................... 16
表2. 五種「磺酸鈉化合物」和「蘇拉明」的「脂溶性」 ....................... 17
表3. 合成「磺酸鈉化合物」 3、6和8之反應條件 ................................. 18
表4. 合成「硫脲化合物」9之反應條件 ................................................ 21
表5. 合成「尿素化合物」15之反應條件 .............................................. 24
表6. Compound Purity by HPLC ............................................................ 42
(1) Prasad, B. V.; Crawford, S.; Lawton, J. A.; Pesavento, J.; Hardy, M.; Estes, M. K. Structural Studies on Gastroenteritis Viruses. Novartis Found. Symp. 2001, 238, 26–46.
(2) Le Guyader, F. S.; Krol, J.; Ambert, B. K.; Ruvoen, C. N.; Desaubliaux, B.; Parnaudeau, S.; Le Saux, J. C.; Ponge, A.; Pothier, P.; Atmar, R. L.; Pendu, J. Comprehensive Analysis of a Norovirus-Associated Gastroenteritis Outbreak, from the Environment to the Consumer. J. Clin. Microbiol. 2010, 48, 915–920.
(3) Kapikian, A. Z. Overview of Virus Gastroenteritis. Arch. Virol. Suppl. 1996, 12, 7–19.
(4) Büchen, O. C. The Universal Virus Database, 4th ed.; Columbia University: New York, 2006.
(5) Nygard, K.; Torven, M.; Ancker, C.; Knauth, S. B.; Hedlund, K. O.; Giesecke, J.; Svensson, L. Emerging genotype (GGIIb) of norovirus in drinking water, Sweden. Emerg. Infect. Dis. 2003, 9, 1548–1552.
(6) Said, M. A.; Perl, T. M.; Sears, C. L. Gastrointestinal Flu: Norovirus in Health Care and Long-Term Care Facilities. Clin. Infect. Dis. 2008, 47, 1202–1208.
(7) Rockx, B.; Wit, M. D.; Vennema, H.; Vinje, J.; Bruin, E. D.; Duynhoven, Y. V.; Koopmans, M. Gastrointestinal flu: Norovirus in health care and long-term care facilities. Clin. Infect. Dis. 2002, 35, 246–253.
(8) O'Neill, H. J.; McCaughey, C.; Wyatt, D. E.; Mitchell, F.; Coyle, P. V. Gastroenteritis Outbreaks Associated with Norwalk-like Viruses and Their Investigation by Nested RT-PCR. BMC. Microbiology 2001, 1, 14.
(9) Widdowson, M. A.; Sulka, A.; Bulens, S. N.; Beard, R. S.; Chaves, S. S.; Hammond, R.;Salehi, E. D. P.; Swanson, E.; Totaro, J.; Woron, R.; Mead, P. S.; Bresee, J. S.; Monroe, S. S.; Glass, R. I. Norovirus and Foodborne Disease, United States, 1991–2000. Emerg. Infect. Dis. 2005, 11, 95–102.
(10) Shieh, Y.; Monroe, S. S.; Fankhauser, R. L.; Langlois, G. W.; Burkhardt, W.; Baric, R. S. Detection of Norwalk-like Virus in Shellfish Implicated in Illness. J. Infect. Dis. 2000, 181, 360–366.
(11) Morse, D. L.; Guzewich, J. J.; Hanrahan, M. P.; Stricof, R.; Shayegani, M.; Deibel, R.; Grabau, J. C.; Nowak, N. A.; Herrmann, J. E.; Cukor, G.; Blacklow, N. R. Widespread Outbreaks of Clam-Associated and Oyster-Associated Gastroenteritis: Role of Norwalk Virus. N. Engl. J. Med. 1986, 314, 678–681.
(12) Patel, M. M.; Hall, A. J.; Vinje, J.; Parashar, U. D. Noroviruses: A Comprehensive Review. J. Clin. Virol. 2009, 44, 1–8.
(13) Mastrangelo, E.; Pezzullo, M.; Tarantion, D.; Petazzi, R.; Germani, F.; Kramer, D.;Robel, I.; Rohayem, J.; Bolognesi, M.; Milani, M. Structure-Based Inhibition of Norovirus RNA-Dependent RNA Polymerases. J. Mol. Biol. 2012, 419, 198–210.
(14) Jennings, F. W.; Rodgers, J.; Bradley, B.; Gettinby, G.; Kennedy, P. G.; Murray, M. Human African Trypanosomiasis: Potential Therapeutic Benefits of an Alternative Suramin and Melarsoprol Regimen. Parasitol. Int. 2002, 51, 381–388.
(15) Darsaud, A.; Chevrier, C.; Bourdon, L.; Dumas, M.; Buguet, A.; Bouteille, B. Megazol Combined with Suramin Improves a New Diagnosis Index of the Early Meningo-Encephalitic Phase of Experimental African Trypanosomiasis. Trop. Med. Int. Health. 2004, 9, 83–91.
(16) Anderson, J.; Fuglsang, H. Further-Studies on Treatment of Ocular Onchocerciasis with Diethylcarbamazine and Suramin. Br. J. Ophthalmol. 1978, 62, 450–457.
(17) Zamai, M.; Hariharan, C.; Pines, D.; Safran, M.; Yayon, A.; Caiolfa, V. R.; Cohen-Luria, R.; Pines, E.; Parola, A. H. Nature of Interaction Between Basic Fibroblast Growth Factor and the Antiangiogenic Drug 7,7-(Carbonyl-bis[imino-N-
methyl-4,2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino])-bis-(1,3-
naphtalene disulfonate). II. Removal of Polar Interactions Affects Protein Folding. Biophys. J. 2002, 82, 2652–2664.
(18) Jentsch, K.; Hunsmann, G.; Hartmann, H.; Nickel, P. Inhibition of Human-Immunodeficiency-Virus Type-I Reverse-Transcriptase by Suramin-Related Compounds. J. Gen. Virol. 1987, 68, 2183–2192.
(19) Manetti, F.; Corelli, F.; Botta, M. Fibroblast Growth Factors and Their Inhibitors. Curr. Pharm. Des. 2000, 6, 1897–1924.
(20) Dunn, P. M.; Blakeley, A. G. Suramin: a Reversible P2-Purinoceptor Antagonist in the Mouse vas Deferens. Br. J. Pharmacol. 1988, 93, 243–245.
(21) Sola, F.; Farao, M.; Pesenti, E.; Marsiglio, A.; Mongelli, N.; Grandi, M. Antitumor-Activity of Fce-26644 a New Growth-Factor Complexing Molecule. Cancer Chemother. Pharmacol. 1995, 36, 217–222.
(22) Stein, C. Suramin: a Novel Antineoplastic Agent With Multiple Potential Mechanisms of Action. Cancer Res. 1993, 53, 2239–2248.
(23) Zhao, L.; Wientjes, M. G.; An, J. L. S. Evaluation of Combination Chemotherapy: Integration of Nonlinear Regression, Curve Shift, Isobologram, and Combination Index Analyses. Clin. Cancer Res. 2004, 10, 7994–8004.
(24) Wang, L.; Li, J. J.; Zheng, Z. B.; Liu, H. X.; Du, G. J.; Li, S. Antitumor Activities of a Novel Indolin-2-ketone Compound, Z24: More Potent Inhibition on bFGF-Induced Angiogenesis and bcl-2 Over-Expressing Cancer Cells. Eur. J. Pharmacol. 2004, 502, 1–10.
(25) Ullmann, H.; Meis, S.; Hongwiset, D.; Marzian, C.; Wiese, M.; Nickel, P.; Communi, D.; Boeynaems, J. M.; Wolf, C.; Hausmann, R.; Schmalzing, G.; Kassack, M. U. Synthesis and Structure-Activity Relationships of Suramin-Derived P2Y11 Receptor Antagonists with Nanomolar Potency. J. Med. Chem. 2005, 48, 7040–7048.
(26) Kerns, E. H.; Di, L. Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization.; Elsevier: NewYork, 2008.
(27) Padiya, K. J.; Gavade, S.; Karile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Barghese, S.; Harel, D.; Kurhade, S. Unprecedented "In Water" Imidazole Carbonylation: Paradigm Shift for Preparation of Urea and Carbamate. Org. Lett. 2012, 14, 2814–2817.
(28) Thomas, G. Medicinal Chemistry: An Introduction, 2nd ed.; Wiley: Chichester, 2007.
(29) Bookser, B. C.; Ugarkar, B. G.; Matelich, M. C.; Lemus, R. H.; Allan, M.; Tsuchiya, M.; Nakane, M.; Nagahisa, A.; Wiesner, J. B.; Erion, M. D. Adenosine Kinase Inhibitors. 6. Synthesis, Water Solubility, and Antinociceptive Activity of 5-Phenyl-7-(5-deoxy-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidines Substituted at C4 with Glycinamides and Related Compounds. J. Med. Chem. 2005, 48, 7808–7820.
(30) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Delivery Rev. 1997, 23, 3–25.
(31) Pinnen, F.; Cacciatore, I.; Cornacchia, C.; Sozio, P.; Iannitelli, A.; Costa, M.; Pecci, L.; Nasuti, C.; Cantalamessa, F.; Stefano, A. D. Synthesis and Study of L-Dopa-Glutathione Codrugs as New Anti-Parkinson Agents with Free Radical Scavenging Properties. J. Med. Chem. 2007, 50, 2506–2515.
(32) Garrido, N. M.; Queimada, A. J.; Horge, M.; Macedo, E. A.; Economou, I. G. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies. J. Chem. Theory Comput. 2009, 5, 2436.
(33) Garrido, N. M.; Jorge, M.; Queimada, A. J.; Macedo, E. A.; Economou, I. G. Using Molecular Simulation to Predict Solute Solvation and Partition Coefficients in Solvents of Different Polarity. Phys. Chem. Chem.Phys. 2011, 13, 9155–9164.
(34) Scozzafava, A.; Menabuoni, L.; Mincione, F.; Supuran, C. T. Carbonic Anhydrase Inhibitors. A General Approach for the Preparation of Water-Soluble Sulfonamides Incorporating Polyamino-Polycarboxylate Tails and of Their Metal Complexes Possessing Long-Lasting, Topical Intraocular Pressure-Lowering Properties. J. Med. Chem. 2002, 45, 1466–1476.
(35) Kraszni, M.; Banyai, I.; Noszal, B. Determination of Conformer-Specific Partition Coefficients in Octanol/Water Systems. J. Med. Chem. 2003, 46, 2241–2245.
(36) Waters, L. J.; Kasprzyk, H. B. Micellar Chromatographic Determination of Partition Coefficients and Associated Thermodynamic Data for Pharmaceutical Compounds. J. Therm. Anal. Calorim. 2010, 102, 343–347.
(37) Lee, S.; Cho, K. H.; Acree, Jr. W. E.; No, K. T. Development of Surface-SFED Models for Polar Solvents. J. Chem. Inf. Model. 2012, 52, 440–448.
(38) Masum, M. A.; Wai, M. C.; Dunnenberger, H. Solvent-Free C-Benzoylation and N-Benzoylation Reactions Using Microwave Heating. Synth. Commun. 2011, 41, 2888–2898.
(39) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of sp3 C–H Bonds Catalyzed by Palladium Acetate. J. Am. Chem. Soc. 2005, 127, 13154–13155.
(40) Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Elsevier: Rockford, 2008.
(41) Kassack, M. U.; Braun, K.; Ganso, M., Ullmann, H.; Nickel, P.; Böing, B.; Muller, G.; Lambrecht, G. Structure–Activity Relationships of Analogues of NF449 Confirm NF449 as the most Potent and Selective Known P2X1 Receptor Antagonist. Eur. J. Med. Chem. 2004, 39, 345–357.
(42) Asakawa, C.; Ogawa, M.; Kumata, K.; Fujinaga, M.; Yamasaki, T.; Xie, L.; Yui, J.; Kawamura, K.; Fukumura, T.; Zhang, M. R. Radiosynthesis of Three [11C]Ureido-Substituted Benzenesulfonamides as PET Probes for Carbonic Anhydrase IX in Tumors. Bioorg. Med. Chem. Lett. 2011, 21, 7017–7020.
(43) Asthana, D.; Pandey, R.; Mukhopadhyay, P. Urea-based Constructs Readily Amplify and Attenuate Nonlinear Optical Activity in Response to H-bonding and Anion Recognition. Chem. Commun. 2013, 49, 451–453.
(44) Damle, S. B. Safe Handling of Diphosgene, Triphosgene. Chem. Eng. News 1993, 71, 4.
(45) Struga, M.; Kossakowski, J.; Kedzierska, E.; Fidecka, S.; Stefanska, J. Synthesis and Pharmacological Activity of Urea and Thiourea Derivatives of 4-Azatricyclo[5.2.2.02,6]undec-8-ene-3,5-dione. Chem. Pharm. Bull. 2007, 55, 796–799.
(46) Venkatachalam, T. K.; Mao, C.; Uckun, F. M. Effect of Stereochemistry on the Anti-HIV Activity of Chiral Thiourea Compounds. Bioorg. Med. Chem. 2004, 12, 4275–4284.
(47) Bloom, J. D.; Dushin, R. G.; Curran, K. J.; Donahue, F.; Norton, E. B.; Terefenko, E.; Jonas, T. R.; Ross, A. A.; Feld, B.; Lang, S. A.; Digrandi, M. J. Thiourea Inhibitors of Herpes Viruses. Part 2: N-Benzyl-N'-arylthiourea Inhibitors of CMV. Bioorg. Med. Chem. Lett. 2004, 14, 3401–3406.
(48) Seth, P. P.; Ranken, R.; Robinson, D. E.; Osgood, S. A.; Risen, L. M.; Rodgers, E. L.; Migawa, M. T.; Jefferson, E. A.; Swayze, E. E. Aryl Urea Analogs with broad-Spectrum Antibacterial Activity. Bioorg. Med. Chem. Lett. 2004, 14, 5569–5572.
(49) Erve, J. C. L.; Amarnath, V.; Graham, D. G.; Sills, T. C.; Morgan, A. L.; Valentine, W. M. Carbon Disulfide and N, N-Diethyldithiocarbamate Generate Thiourea Cross-Links on Erythrocyte Spectrin in Vivo. Chem. Res. Toxical. 1998, 11, 544–549.
(50) Treder, A. P.; Andruszkiewicz, R.; Zgoda, W.; Walkowiak, A.; Ford, C.; Hudson, A. L. New imidazoline/α2-adrenoceptors affecting compounds-4(5)-(2-aminoethyl)imidazoline (dihydrohistamine) derivatives. Synthesis and receptor affinity studies. Bioorg. Med. Chem. 2011, 19, 156–167
(51) Pianowski, Z.; Gorska, K.; Oswald, L.; Merten, C. A.; Winssinger, N. Imaging of mRNA in Live Cells Using Nucleic Acid-Templated Reduction of Azidorhodamine Probes. J. Am. Chem. Soc. 2009, 131, 6492–6497.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *