|
(1) Rezza, G.; Nicoletti, L. Infection with Chikungunya Virus in Italy: an Outbreak in a Temperate Region. Lancet 2007, 370, 1840–1846. (2) Charrel, R. N. First Cases of Autochthonous Dengue Fever and Chikungunya Fever in France: from Bad Dream to Reality! Clin. Microbiol. Infect. 2010, 10, 1702–1704. (3) Strobel, M. Chikungunya, an Epidemic Arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. (4) Marimoutou, C. Chikungunya Virus Infection. Curr. Infect. Dis. Rep. 2011, 13, 218–228. (5) Voss, J. E.; Vaney, M.-C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.;Bricogne, G.; Rey, F. A. Glycoprotein Organization of Chikungunya Virus Particles Revealed by X-ray Crystallography. Nature 2010, 468, 709–714. (6) Mirkin, C. A. Multiple Thiol-Anchor Capped DNA-gold Nanoparticle Conjugates. Nucleic Acids Res. 2002, 30, 1558–1562. (7) Pingarrón, J. M. Enzyme-Controlled Sensing–Actuating NanomachineBased on Janus Au–Mesoporous Silica Nanoparticles. Chem. Eur. J. 2013, 19, 7889–7894. (8) Farokhzad, O. C. Formulation of Functionalized PLGA-PEG Nanoparticles for in Vivo Targeted Drug Delivery. Biomaterials 2007, 28, 869–876. (9) Hill, L. E.; Taylor, T. M.; Gomes, C. Antimicrobial Efficacy of Ppoly(DL-lactide-co- glycolide) (PLGA) Nanoparticles with Entrapped Cinnamon Bark Extract Against Listeria monocytogenes and Salmonella typhimurium. J. Food Sci. 2013, 78, 626–632. (10) Keselowsky, B. G. Combinatorial Co-Encapsulation of Hydrophobic Molecules in Poly(lactide-co-glycolide) Microparticles. Biomaterials 2013, 34, 3422–3430. (11) Lowman, A. M. Novel Oral Insulin Delivery Systems Based on Complexation Polymer Hydrogels: Single And Multiple Administration Studies in Type 1 and 2 Diabetic Tats. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319–327. (12) Feng, S. S. Targeted Delivery of Paclitaxel Using Folate-Decorated Poly(lactide) - Vitamin E TPGS Nanoparticles. Biomaterials 2008, 29, 2663–2672. (13) Rossi, C. Leucinostatin-A Loaded Nanospheres: Characterization and in Vivo Toxicity and Efficacy Evaluation. Int. J. Phytorem. 2004, 275, 61–72. (14) Moffatt, S. Uptake Characteristics of NGR-Coupled Stealth PEI/pDNA Nanoparticles Loaded with PLGA-PEG-PLGA tri-Block Copolymer for Targeted Delivery to Human Monocyte-Derived Dendritic Cells. Int. J. Phytorem. 2006, 321, 143–154. (15) Kissel, T. Morphological Characterization of Microspheres, Films and Implants Prepared from Poly(lactide-co-glycolide) and ABA Triblock Copolymers: is the Erosion Controlled by Degradation, Swelling or Diffusion? Eur. J. Pharm. Sci. 2001, 51, 171–178. (16) Kunda, N. K. ;Somavarapu, S.; Gordon, S. B.; Hutcheon, G. A.; Saleem, I. Y. Nanocarriers Targeting Dendritic Cells for Pulmonary Vaccine Delivery. Pharm. Res. 2013, 30, 325–324. (17) Kumar, S. Aptamer Conjugated Paclitaxel and Magnetic Fluid Loaded Fluorescently Tagged PLGA Nanoparticles for Targeted Cancer Therapy. J. Magn. Magn. Mater. 2013, 344, 116–123. (18) Whitesides, G. M. The 'Right' Size in Nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161–1165. (19) Reyes-Ortega, F. Encapsulation of Low Molecular Weight Heparin (bemiparin) into Polymeric Nanoparticles Obtained from Cationic Block Copolymers: Properties and Cell Activity. J. Mater. Chem. B. 2013, 1, 850–860. (20) Stride, E. Encapsulation of Superparamagnetic Iron Oxide Nanoparticles in Poly- (lactide-co-glycolic acid) Microspheres for Biomedical Applications. Mater. Sci. Eng. C. 2013, 33, 3129–3137. (21) Shapiro, E. M. The Effect of Cryoprotection on the use of PLGA Encapsulated Iron Oxide Nanoparticles for Magnetic Cell Labeling. J. Nanosci. Nanotechnol. 2013, 13, 3778–3783. (22) Maleki, M.; Latifi, M.; Amani-Tehran, M. Mathur, S. Non-Invasive Delivery of Nanoparticles to Hair Follicles: A Perspective for Transcutaneous Immunization. Polym. Eng. Sci. 2013, 16, 1–10. (23) Langer, R. Drug Delivery and Targeting. Nature 1998, 392, 5–10. (24) Langer, R. New Methods of Drug Delivery. Science 1990, 249, 1527–1533. (25) Dahan, A.; Hoffman, A. Rationalizing the Selection of Oral Lipid Based Drug Delivery Systems by an in Vitro Dynamic Lipolysis Model for Improved Oral Bioavailability of Poorly Water Soluble Drugs. J. Control. Release 2008, 129, 1–10. (26) Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted Delivery of Cisplatin to Prostate Cancer Cells by Aptamer Functionalized Pt(IV) Prodrug-PLGA- PEG Nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17356–17361. (27) Fujiyama, J.; Nakase, Y.; Osaki, K.; Sakakura, C.; Yamagishi, H.; Hagiwara, A. Cisplatin Incorporated in Microspheres: Development and Fundamental Studies for Its Clinical Application. J. Control. Release 2003, 89, 397–408. (28) Prabaharan, M.; Grailer, J. J.; Pilla, S. Gold Nanoparticles with a Monolayer of Doxorubicin-Conjugated Amphiphilic Block Copolymer for Tumor-Targeted Drug Delivery. Biomaterials 2009, 30, 6065–6075. (29) Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2, 889–896. (30) Lammers, T.; Subr, V.; Ulbrich, K.; Hennink, W. E.; Storm, G.; Kiessling, F. Polymeric Nanomedicines for Image-Guided Drug Delivery and Tumor-Targeted Combination Therapy. Nano Today 2010, 5, 197–212.
(31) Kim, T. W.; Slowing, I. I.; Chung, P. W. Ordered Mesoporous Polymer-Silica Hybrid Nanoparticles as Vehicles for the Intracellular Controlled Release of Macromolecules. ACS Nano 2011, 5, 360–366. (32) Khdair, A.; Handa, H.; Mao, G. Z. Nanoparticle-Mediated Combination Chemotherapy and Photodynamic Therapy Overcomes Tumor Drug Resistance in Vitro. Eur. J. Pharm. Biopharm. 2009, 71, 214–222. (33) Hwu, J. R. Synthesis of New Benzimidazole-Coumarin Conjugates as Anti-Hepatitis C Virus Agents. Antiviral Res. 2008, 77, 157–162. (34) Bookser, B. C. Adenosine Kinase Inhibitors. 6. Synthesis, Water Solubility, and Antinociceptive Activity of 5-Phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo[2,3- d]pyrimidines Substituted at C4 with Glycinamides and Related Compounds.. J. Med. Chem. 2005, 48, 7808–7820. (35) Labhasetwar, V. Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue. Adv. Drug Delivery Rev. 2012, 64, 61–67. (36) Fessi, H.; Puisieux, F.; Devissaguet, J. P.; Ammoury, N.; Benita, S. Nanocapsule Formation by Interfacial Polymer Deposition Following Solvent Displacement. Int. J. Pharm. 1989, 55, R1–R4. (37) Galindo-Rodriguez, S.; Allémann, E.; Fessi, H.; Doelker, E. Physicochemical Parametersassociated with Nanoparticle Formation in the Salting-Out, Emulsification- Diffusion, and Nanoprecipitation Methods. Pharm. Res. 2004, 21, 1428–1439. (38) Lee, K. J. A New Synthesis of Methyl 7H-Dibenz[b,g]oxocin-6-carboxylates from Morita-Baylis-Hillman Adducts of 2-Phenoxybenzaldehydes. Synthesis 2011, 3, 377–386. (39) Sabliov, C. M. Size Control of Poly(D,L-lactide-co-glycolide) and Poly(D,L-lactide-co- glycolide)-Magnetite Nanoparticles Synthesized by Emulsion Evaporation Technique. Colloid Surj. A–Physicochem. Eng. Asp. 2007, 299, 209–216.
(40) Bechet, D. Nanoparticles as Vehicles for Delivery of Photodynamic Therapy Agents. Trends Biotechnol. 2008, 26, 612–621. (41) Giunchedi, P. Nasal administration of Carbamazepine using chitosan microspheres: In Vitro/in Vivo Studies. Int. J. Phytorem. 2006, 307, 9–15. (42) Kumar, V.; Prud'Homme, R. K. Thermodynamic Limits on Drug Loading in Nanoparticle Cores. J. Pharm. Sci. 2008, 97, 4904–4914. (43) Delie, F. Nanomedicines for Active Targeting: Physico-Chemical Characterization of Paclitaxel-Loaded Anti-HER2 Immunonanoparticles and in Vitro Functional Studies on Target cells. Eur. J. Pharm. Sci. 2009, 38, 230–237. (44) Winey, K. I. Haloperidol-Loaded PLGA Nanoparticles: Systematic Study of Particle Size and Drug Content. Int. J. Pharm. 2007, 336, 367–375. (45) Fattal, E. Encapsulation of Dexamethasone into Biodegradable Polymeric Nanoparticles. Int. J. Pharm. 2007, 331, 153–159. (46) Simõesa, S. Paclitaxel-Loaded PLGA Nanoparticles: Preparation, Physicochemical Characterization and in Vitro Anti-Tumoral Activity. J. Control Release 2002, 83, 274–287. (47) Acharya, S.; Sahoo, S. K. PLGA Nanoparticles Containing Various Anticancer Agents and Tumour Delivery by EPR Effect. Adv. Drug Deliv. Rev. 2011, 63, 170–183. (48) Maeda, H. The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting. Adv. Enzyme Regul. 2001, 41, 189–207. (49) Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392. (50) Maeda, H.; Matsumura, Y. Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit. Rev. Ther. Drug Carrier Syst. 1989, 6, 193–210.
(51) Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. (52) Danhier, F.; Feron, O.; Preat, V. To Exploit the Tumor Microenvironment: Passive and Active Tumor Targeting of Nanocarriers for Anti-Cancer Drug Delivery. J. Control. Release 2010, 148, 135–146. (53) Dean, D. R. Fabrication and Characterization of Aligned Nanofibrous PLGA/Collagen Blends as Bone Tissue Scaffolds. Polymer 2009, 50, 3778–3785. (54) Islam, S. Lipophilic and Hydrophilic Drug Loaded Pla/Plga in Situ Implants Implants: Studies on Thermal Behavior of Drug & Polymer and Observation of Parmeters Influencing Drug Burst Release with Corresponding Effects on Loading Efficiency & Morphology of Implants. Int. J. Pharm. Pharm. Sci. 2011, 3, 181–188. (55) Scozzafava, A.; Menabuoni, L.; Mincione, F.; Supuran, C. T. Carbonic Anhydrase Inhibitors: a General Approach for the Preparation of Water-Soluble Sulfonamides Incorporating Polyamino−Polycarboxylate Tails and of Their Metal Complexes Possessing Long-Lasting, Topical Intraocular Pressure-Lowering Properties. J. Med. Chem.2002, 45, 1466–1476. (56) Kraszni, M.; Banyai, I.; Noszal, B. Determination of Conformer-Specific Partition Coefficients in Octanol/Water Systems. J. Med. Chem. 2003, 46, 2241–2245. (57) Shih, H. T. Surface Modification Characterization and Biocompatibility of PHBV/PLGA Blend Membrances. 2008, Tatung University, Taiwan, ROC. (58) Möller, M. Validation of a Novel Molecular Dynamics Simulation Approach for Lipophilic Drug Incorporation into Polymer Micelles. J. Phys. Chem. B. 2012, 116, 4338–4345. (59) Guzelian, P. S. 5 of 12 Forms of Vaccinia Virus-Expressed Human Hepatic Cytochrome- P450 Metabolically Activate Aflatoxin-B1. Nati. Acad. Sci. USA 1990, 87, 4790–4793. (60) Grimaudo, V.; Gueissaz, F.; Hauert, J.; Sarraj, A.; Kruithof, E. K. O.; Bachmann, F. Necrosis of Skin Induced by Coumarin in a Patient Deficient in Protein-S. Brit. Med. J. 1989, 298, 233–234. (61) Robins, R. K.; Hitching, G. H. Studies on Condensed Pyrimidine Systems. XIV. Some Pyrido [3,2-d] pyrimidines. J. Am. Chem. Soc. 1956, 78, 973–976. (62) Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of Univalent Oons Across Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238–252. (61) Mosrin, M.; Boudet, N.; Knochel, P. Regio- and Chemoselective Magnesiation of Protected Uracils and Thiouracils Using TMPMgCl Center Dot LiCl and TMP2Mg Center Dot 2LiCl. Org. Biomol. Chem. 2008, 6, 3237–3239. (62) McKinnon, D. M.; Chauhan, M. C-13 Nuclear Magnetic-Resonance Spectra of N- Methylated, O-Methylated, and S-Methylated Uracil and Thiouracil Derivatives. Can. I. Chem. 1978, 56, 725–729. (63) Lin, S. Y. New Nucleoside– and Nucleobase–Coumarin Conjugates as Anti-Hepatitis C Virus Agents. 2010, National Tsing Hua University, Taiwan, ROC. (64) Leserman, L. D.; Barbet, J.; Kourilsky, F.; Weinstein, J. N. Targeting to Cells of Fluorescent Liposomes Covalently Coupled with Monoclonal Antibody or Protein-A. Nature 1980, 288, 602–604. (65) Heath, T. D.; Fraley, R. T.; Papahdjopoulos, D. Antibody Targeting of Liposomes - Cell Specificity Obtained by Conjugation of F(Ab')2 to Vesicle Surface. Science 1980, 210, 539–541. (66) Allen, T. M.; Chonn, A. Large Unilamellar Liposomes with Low Uptake into the Reticuloendothelial System. FEBS Lett. 1987, 223, 42–46. (67) Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes. FEBS Lett. 1990, 268, 235–237. |