帳號:guest(3.14.253.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊士奇
論文名稱(中文):設計及合成抗「諾羅病毒」之新型 「四磺基芳香環鈉鹽」化合物
論文名稱(外文):Design and Synthesis of Arene Tetra Sulfonate Sodium Salts as Anti-Noroviral Agents
指導教授(中文):胡紀如
口試委員(中文):許銘華
張家靖
胡紀如
蔡淑貞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023569
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:54
中文關鍵詞:諾羅病毒蘇拉明
外文關鍵詞:norovirussuraminNF023
相關次數:
  • 推薦推薦:0
  • 點閱點閱:290
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
「諾羅病毒」 (Norovirus)為一種單股RNA病毒,是目前已知引起急性腸胃炎疫情,最主要的非細菌病原。在全球皆有疫情的發生,譬如美國大約有50%腸胃炎事件與「諾羅病毒」有關。雖然世界各地時常因「諾羅病毒」感染而爆發大規模的疫情,但現階段並沒有有效的藥物可以治療「諾羅病毒」,所以發展有效的抗「諾羅病毒」藥物是全球性的課題。
義大利米蘭大學的Bolognesi教授團隊發現8,8'-[carbonylbis(imino-3,1-phenylen¬ecarbonylimino)]bis-1,3,5-
naphthalene-trisulphonic¬ acid hexasodium salt及Suramin對於「諾羅病毒」有治療的潛力,但有脂溶性過低而不易進入細胞的問題。因此我們與其團隊合作並針對NF023作改善希望合成出有效抑制抗「諾羅病毒」的新型化合物。本人成功的利用「三光氣」(triphosgene) 在調控酸鹼值的情況下,成功的合成出三個新型「四磺基芳香環鈉鹽」化合物,並以氫譜、碳譜、高解析質譜儀佐證其結構 。藉由水溶性及脂溶性測試,探討結構對其脂溶性的影響。
Norovirus is a category of small non-enveloped and single-stranded RNA viruses from Caliciviridae family, that virus is a major cause of epidemics of acute nonbacterial gastroenteritis in the world. Approximately 50% of all gastroenteritis outbreaks have been reported to be caused by norovirus in the United States. Although outbreaks of norovirus infection often occur in the world, but there is no specific medicine to treat people with norovirus illness. There is thus an unmet need for potent antiviral compounds.

Prof. Bolognesi at the university of Milano found two high-potency norovirus inhibitors: Suramin and 8,8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-
1,3,5-naphthalene-trisulphonic¬ acid hexasodium salt (NF023), thus we cooperate with his team and focus on NF023, that we hope to improve the activity by synthesizing structural analogs of NF023 as anti-norovirus agents.

We successfully synthesized three new conjugate compounds containing urea linker by using triphosgene under the condition of adjusted pH value, and confirmed the struture by 1H-NMR, 13C-NMR and high resolution mass spectrometry. From water solubility experiment and partition coefficient data, we can conclude we increase drug lipophilicity successfully compared with NF023 and Suramin.
目 錄
中文摘要 ……………………………………………………...…… i
英文摘要 …………………………….……...……………...……… ii
謝誌 ……………………………….…………...………………...… iii
目錄 ………………………….…………………...…………...…… iv
圖目錄 ………………...…..………………...……………….…… viii
表目錄 ……………………..……………………...………….…… ix
一、 緒論 ……………………….………………………...….…. 1
二、 結果 ……………….………………………………....……. 9
2-1 合成4,4'-(Carbonylbisimino)-bis-1,5-naphthalenedisulfonic¬
Acid Tatrasodium Salt (2)………………………......… 9
2-2 合成4,4'-[Carbonylbis(imino-3,1-phenylene- bis-1,5-
naphthalenedisulfonic¬ Acid Tatrasodium Salt (6)….… 10
2-3 合成4,4'-[carboCnylbis(imino-3,4-methyl,1- phenylenecarbonyl- imino)]-bis-1,5-naphthalenedisulfonic¬
Acid Tatrasodium Salt (10)…………………...….…... 11
2-4 鑑定Symmetry Urea化合物1、6及10 .…............... 12
2-5 製備已知具羥基Couramin 14 ...………….........….... 14
2-6 製備已知具鹵素基團Couramin 18a–c ……...……… 15
2-7 藥物水溶性測試和脂溶性測試 ……………………. 16
三、 討論 …………………………………..…………….......… 19
3-1 探討以「三光氣」取代「光氣」之反應性差異 ...….… 19
3-2 「磺基芳香環鈉鹽」化合物的脂溶性和
水溶性 ....................................................................... 20
3-3 將Coumarin連結在Suramin之可能性探討 (A) …… 22
3-4 將Coumarin連結在Suramin之可能性探討 (B) …… 26
四、 結論 ……………………………..……………...............… 28
五、 實驗部分 ……………………………………….….……..... 29
六、 參考文獻 ……………………………………....…….....… 36
七、 光譜 ………………………………………...….…………. 42
4,4'-(Carbonylbisimino)¬bis-1,5-naphthalene- disulfonic¬ Acid Tatrasodium Salt (2) 1H NMR spectrum .….........…… 42
4,4'-(Carbonylbisimino)¬bis-1,5-naphthalene- disulfonic¬ Acid Tatrasodium Salt (2) 13C NMR spectrum ..….......…… 43
4,4'-(Carbonylbisimino)¬bis-1,5-naphthalene- disulfonic¬ Acid Tatrasodium Salt (2) UV spectrum ..….................…… 43
4,4'-(Carbonylbisimino)¬bis-1,5-naphthalene- disulfonic¬ Acid Tatrasodium Salt (2) HPLC spectrum ..…............…… 44
4,4'-[carbonylbis(imino-3,1-phenylenecarbonyl-
imino)]bis-1,5-naphthalene-disulfonic¬ acid tatrasodium
salt (6) 1H NMR spectrum ..……..………..….………. 44

4,4'-[carbonylbis(imino-3,1-phenylenecarbonyl-
imino)]bis-1,5-naphthalene-disulfonic¬ acid tatrasodium
salt (6) 13C NMR spectrum ..…….……..……….……. 45
4,4'-[carbonylbis(imino-3,1-phenylenecarbonyl-
imino)]bis-1,5-naphthalene-disulfonic¬ acid tatrasodium
salt (6) IR spectrum ..…………….…….……….……. 45
4,4'-[carbonylbis(imino-3,1-phenylenecarbonyl-
imino)]bis-1,5-naphthalene-disulfonic¬ acid tatrasodium
salt (6) UV spectrum ..…………....…….……….……. 46
4,4'-[carbonylbis(imino-3,1-phenylenecarbonyl-
imino)]bis-1,5-naphthalene-disulfonic¬ acid tatrasodium
salt (6) HPLC spectrum ..…….………....……….……. 46
4-(3-Nitrobenzamido)naphthalene-1,5-disulfonic Acid
Disodium salt (8) 1H NMR spectrum ..………......…… 47
4-(3-Nitrobenzamido)naphthalene-1,5-disulfonic Acid
Disodium salt (8) 13C NMR spectrum ..……….....…… 47
4-(3-Nitrobenzamido)naphthalene-1,5-disulfonic Acid
Disodium salt (8) IR spectrum ..……………........…… 48
4-(3-Nitrobenzamido)naphthalene-1,5-disulfonic Acid
Disodium salt (8) UV spectrum ..……………......…… 48
4-(3-Nitrobenzamido)naphthalene-1,5-disulfonic Acid
Disodium salt (8) HPLC spectrum ..……………..…… 49
1H NMR 4-(3-Aminobenzamido)naphthalene-1,5-disulfonic Acid Disodium Salt (9) 1H NMR spectrum ..….……… 49
1H NMR 4-(3-Aminobenzamido)naphthalene-1,5-disulfonic Acid Disodium Salt (9) 13C NMR spectrum ...…...…… 50
1H NMR 4-(3-Aminobenzamido)naphthalene-1,5-disulfonic Acid Disodium Salt (9) IR spectrum ...……....…...…… 59
1H NMR 4-(3-Aminobenzamido)naphthalene-1,5-disulfonic Acid Disodium Salt (9) UVspectrum ...……..........…… 51
1H NMR 4-(3-Aminobenzamido)naphthalene-1,5-disulfonic Acid Disodium Salt (9) HPLC spectrum ...……....…… 51
4,4'-[Carbonylbis(imino-3,4-methyl,1-phenylene-
carbonylimino)]bis-1,5-naphthalenedisulfonic¬ Acid Tatrasodium Salt (10) 1H NMR spectrum ..………….… 52
4,4'-[Carbonylbis(imino-3,4-methyl,1-phenylene-
carbonylimino)]bis-1,5-naphthalenedisulfonic¬ Acid Tatrasodium Salt (10) 13C NMR spectrum …….…..… 52
4,4'-[Carbonylbis(imino-3,4-methyl,1-phenylene-
carbonylimino)]bis-1,5-naphthalenedisulfonic¬ Acid Tatrasodium Salt (10) IR spectrum …………….........… 53
4,4'-[Carbonylbis(imino-3,4-methyl,1-phenylene-
carbonylimino)]bis-1,5-naphthalenedisulfonic¬ Acid Tatrasodium Salt (10) UV spectrum ……………...…… 53
4,4'-[Carbonylbis(imino-3,4-methyl,1-phenylene-
carbonylimino)]bis-1,5-naphthalenedisulfonic¬ Acid Tatrasodium Salt (10) HPLC spectrum …………...…… 54
(1) Chen, L.; Wu, D.; Ji, L.; Wu, X.; Xu, D.; Cao, Z.; Han, J. Bioinformatics analysis of the epitope regions for norovirus capsid protein. BMC bioinformatics 2013, 14 Suppl 4, S5.
(2) Vinje, J.; Koopmans, P. G. Molecular detection and epidemiology of small round-structured viruses in outbreaks of gastroenteritis in the Netherlands. J. Infect. Dis. 1996, 174, 610615.
(3) Fankhauser, R. L.; Noel, J. S.; Monroe, S. S.; Ando, T.; Glass, R. I. Molecular epidemiology of "Norwalk-like viruses" in outbreaks of gastroenteritis in the united states. J. Infect. Dis. 1998, 178, 15711578.
(4) Marks, P. J.; Vipond, I. B.; Carlisle, D.; Deakin, D.; Fey, R. E.; Caul, E. O. Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiol. Infect. 2000, 124, 481487.
(5) Cheesbrough, J. S.; Green, J.; Gallimore, C. I.; Wright, P. A.; Brown, D. W. G. Widespread environmental contamination with Norwalk-like viruses (NLV) detected in a prolonged hotel outbreak of gastroenteritis. Epidemiol. Infect. 2000, 125, 9398.
(6) Morillo, S. G.; Timenetsky, M. D. S. T. Norovirus: an overview. Rev. Assoc. Med. Bras. 2011, 57, 462467.
(7) Kaplan, J. E.; Feldman, R.; Campbell, D. S.; Lookabaugh, C.; Gary, G. W. The Frequency of a Norwalk-Like Pattern of Illness in Outbreaks of Acute Gastroenteritis. Am. J. Public Health 1982, 72, 13291332.
(8) Goodgame, R. Norovirus gastroenteritis. Curr. Gastroenterol. Rep. 2006, 8, 401408.
(9) El-Kamary, S. S.; Pasetti, M. F.; Mendelman, P. M.; Frey, S. E.; Bernstein, D. I.; Treanor, J. J.; Ferreira, J.; Chen, W. H.; Sublett, R.; Richardson, C.; Bargatze, R. F.; Sztein, M. B.; Tacket, C. O. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J. Infect. Dis. 2010, 202, 16491658.
(10) Mastrangelo, E.; Pezzullo, M.; Tarantino, D.; Petazzi, R.; Germani, F.; Kramer, D.; Robel, I.; Rohayem, J.; Bolognesi, M.; Milani, M. Structure-Based Inhibition of Norovirus RNA-Dependent RNA Polymerases. J. Mol. Biol. 2012, 419, 198210.
(11) Cheson, B. D.; Levine, A. M.; Mildvan, D.; Kaplan, L. D.; Wolfe, P.; Rios, A.; Groopman, J. E.; Gill, P.; Volberding, P. A.; Poiesz, B. J.; Gottlieb, M. S.; Holden, H.; Volsky, D. J.; Silver, S. S.; Hawkins, M. J. Suramin Therapy in Aids and Related Disorders - Report of the United-States-Suramin-Working-Group. Jama-J Am Med Assoc 1987, 258, 13471351.
(12) Kaur, M.; Reed, E.; Sartor, O.; Dahut, W.; Figg, W. D. Suramin's development: What did we learn? Invest. New Drugs 2002, 20, 209219.
(13) Nakata, H. Mitogen-activated protein kinase signaling is involved in suramin-induced neurite outgrowth in a neuronal cell line. Biochem. Biophys. Res. Commun. 2007, 355, 842848.
(14) Soto, F.; Lambrecht, G.; Nickel, P.; Stuhmer, W.; Busch, A. E. Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacol. 1999, 38, 141149.
(15) Hattori, M.; Gouaux, E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 2012, 485, 207212.
(16) Furman, L. M.; Maaty, W. S.; Petersen, L. K.; Ettayebi, K.; Hardy, M. E.; Bothner, B. Cysteine protease activation and apoptosis in Murine norovirus infection. Virol. J. 2009, 6, 139.
(17) Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 2002, 102, 46394750.
(18) Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L. A.; Meggio, F.; Moro, S. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships. J. Med. Chem. 2008, 51, 752759.
(19) Robert, S.; Bertolla, C.; Masereel, B.; Dogne, J. M.; Pochet, L. Novel 3-carboxamide-coumarins as potent and selective FXIIa inhibitors. J. Med. Chem. 2008, 51, 30773080.
(20) Hwu, J. R.; Singha, R.; Hong, S. C.; Chang, Y. H.; Das, A. R.; Vliegen, I.; De Clercq, E.; Neyts, J. Synthesis of new benzimidazole-coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res. 2008, 77, 157162.
(21) Hwu, J. R.; Lin, S. Y.; Tsay, S. C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem. 2011, 54, 21142126.
(22) Cheng, Y.; A, C. S.; Meyers, J. D.; Panagopoulos, I.; Fei, B.; Burda, C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 2008, 130, 1064310647.
(23) Ullmann, H.; Meis, S.; Hongwiset, D.; Marzian, C.; Wiese, M.; Nickel, P.; Communi, D.; Boeynaems, J. M.; Wolf, C.; Hausmann, R.; Schmalzing, G.; Kassack, M. U. Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J. Med. Chem. 2005, 48, 70407048.
(24) Kaye, P. T.; Musa, M. A.; Nocanda, X. W. Efficient and chemoselective access to 3-(chloromethyl)coumarins via direct cyclisation of unprotected Baylis-Hillman adducts. Synthesis-Stuttgart 2003, 531534.
(25) Ahn, S. H.; Jang, S. S.; Han, E. G.; Lee, K. J. A New Synthesis of Methyl 7H-Dibenz[b,g]oxocin-6-carboxylates from Morita-Baylis-Hillman Adducts of 2-Phenoxybenzaldehydes. Synthesis-Stuttgart 2011, 377386.
(26) Aho, J. E.; Salomaki, E.; Rissanen, K.; Pihko, P. M. Synthetic studies toward pectenotoxin 2. Part I. Stereocontrolled access to the C(10)-C(22) fragment. Org. Lett. 2008, 10, 41794182.
(27) Scozzafava, A.; Menabuoni, L.; Mincione, F.; Supuran, C. T. Carbonic anhydrase inhibitors. A general approach for the preparation of water-soluble sulfonamides incorporating polyamino-polycarboxylate tails and of their metal complexes possessing long-lasting, topical intraocular pressure-lowering properties. J. Med. Chem. 2002, 45, 14661476.
(28) Kraszni, M.; Banyai, I.; Noszal, B. Determination of conformer-specific partition coefficients in octanol/water systems. J. Med. Chem. 2003, 46, 22412245.
(29) Kassack, M. U.; Braun, K.; Ganso, M.; Ullmann, H.; Nickel, P.; Boing, B.; Muller, G.; Lambrecht, G. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur. J. Med. Chem. 2004, 39, 345357.
(30) Nickel, P.; Haack, H. J.; Widjaja, H.; Ardanuy, U.; Gurgel, C.; Duwel, D.; Loewe, H.; Raether, W. [Potential filaricides. Suramin analogs]. Arzneim. Forsch. 1986, 36, 11531157.
(31) Eckert, H.; Forster, B. Triphosgene, a Crystalline Phosgene Substitute. Angew. Chem., Int. Ed. 1987, 26, 894895.
(32) Camenisch, G.; Alsenz, J.; van de Waterbeemd, H.; Folkers, G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur. J. Pharm. Sci. 1998, 6, 313319.
(33) Bookser, B. C.; Ugarkar, B. G.; Matelich, M. C.; Lemus, R. H.; Allan, M.; Tsuchiya, M.; Nakane, M.; Nagahisa, A.; Wiesner, J. B.; Erion, M. D. Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo [2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J. Med. Chem. 2005, 48, 78087820.
(34) Cho, C. H.; Yun, H. S.; Park, K. Nickel(0)-catalyzed cross-coupling of alkyl arenesulfonates with aryl Grignard reagents. J. Org. Chem. 2003, 68, 30173025.
(35) Lum, R. T.; Cheng, M.; Cristobal, C. P.; Goldfine, I. D.; Evans, J. L.; Keck, J. G.; Macsata, R. W.; Manchem, V. P.; Matsumoto, Y.; Park, S. J.; Rao, S. S.; Robinson, L.; Shi, S.; Spevak, W. R.; Schow, S. R. Design, synthesis, and structure-activity relationships of novel insulin receptor tyrosine kinase activators. J. Med. Chem. 2008, 51, 61736187.
(36) Yan, L.; Bertarelli, D. C.; Hayallah, A. M.; Meyer, H.; Klotz, K. N.; Muller, C. E. A new synthesis of sulfonamides by aminolysis of p-nitrophenylsulfonates yielding potent and selective adenosine A2B receptor antagonists. J. Med. Chem. 2006, 49, 43844391.
(37) Fortin, S.; Wei, L.; Moreau, E.; Lacroix, J.; Cote, M. F.; Petitclerc, E.; Kotra, L. P.; R, C. G. Design, synthesis, biological evaluation, and structure-activity relationships of substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates as new tubulin inhibitors mimicking combretastatin A-4. J. Med. Chem. 2011, 54, 45594580.
(38) Nakamura, M.; Ueda, M.; Watanabe, S.; Kumamoto, S.; Yamana, K. Syntheses of anthraquinone capped hairpin DNAs and electrochemical redox responses from their self-assembled monolayers on gold electrode. Tetrahedron Lett. 2007, 48, 61596162.
(39) Anderson, C. E.; Donde, Y.; Douglas, C. J.; Overman, L. E. Catalytic asymmetric synthesis of chiral allylic amines. Evaluation of ferrocenyloxazoline palladacycle catalysts and imidate motifs. J. Org. Chem. 2005, 70, 648657.
(40) Froseth, M.; Netland, K. A.; Romming, C.; Tilset, M. Synthesis and characterization of novel Pd(II) and Pt(II) complexes with 5-ring chelating iminoylcarbene ligands. J. Organomet. Chem. 2005, 690, 61256132.
(41) Atwood, J. L.; Barbour, L. J.; Hardie, M. J.; Raston, C. L. Metal sulfonatocalix[4,5]arene complexes: bi-layers, capsules, spheres, tubular arrays and beyond. Coord. Chem. Rev. 2001, 222, 332.
(42) Lepore, S. D.; Bhunia, A. K.; Cohn, P. Arylsulfonate-based nucleophile assisting leaving groups. J. Org. Chem. 2005, 70, 81178121.
(43) Wakui, T.; Smid, J. Anion Dependence of Crown Ether Selectivities for Alkali Picrates and Sulfonates in Dioxane and Toluene - a Synergistic Effect. J. Inclusion. Phenom. 1985, 3, 197208.
(44) Yokota, M.; Uchibori, S.; Hayashi, H.; Koyama, R.; Kosakai, K.; Wakabayashi, S.; Tomiyama, T. Azulene derivatives as TXA(2)/PGH(2) receptor antagonists .2. Synthesis and biological activity of 6-mono- and 6-dihydroxylated-isopropylazulenes. Biorg. Med. Chem. 1996, 4, 575591.
(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *