帳號:guest(18.219.109.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖哲民
作者(外文):Liao, Chie-Ming
論文名稱(中文):有機鈷金屬錯合物CoII(Salen*)在可控/活性自由基聚合反應上的應用
論文名稱(外文):The Application of Cobalt Salen Complexes in Controlled/Living Radical Polymerization
指導教授(中文):彭之皓
指導教授(外文):Peng, Chi-How
口試委員(中文):廖文峯
韓建中
彭之皓
陳俊太
口試委員(外文):Liaw, Wen-Feng
Han, Chien-Chung
Peng, Chi-How
Chen, Jiun-Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023557
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:活性自由基聚合反應聚丙烯酸甲酯聚醋酸乙烯酯
外文關鍵詞:Living Radical PolymerizationCoII(Salen*)poly(methyl acrylate)poly(vinyl acetate)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
摘要
用CoII(Salen*)成功地進行醋酸乙烯酯(vinyl acetate, VAc)和丙烯酸甲酯(methyl acrylate, MA)的活性/可控式自由基聚合反應。得到的符合活性特徵的聚醋酸乙烯酯(poly(vinyl acetate), PVAc)和聚丙烯酸甲酯(poly(methyl acrylate), PMA)。
在VAc的聚合反應系統中,PVAc高分鏈的分子量與單體轉換率呈線性成長,而且可以達到60%以上的單體轉換率和較窄的PDI值(1.09~1.25)。在反應過程中所有CoII(Salen*)會全部轉換成CoIII(Salen*)-R,我們推估其系統有很大的平衡常數(Keq ~ 109 M-1)。此外CoIII(Salen*)-PVAc也被合成出來,在添加物THF和pyridine的幫助下成功地進行鏈延伸聚合反應。單體轉換率可以到50%,而且高分子鏈的成長接近理論分子量。
在MA的聚合反應系統中,也得到PMA高分鏈的分子量與單體轉換率呈線性成長,達到60%以上的單體轉換率和較窄的PDI值(1.20~1.30)。紫外光-可見光光譜儀追蹤CoII(Salen*)在MA聚合反應中並不會全部轉換成CoII(Salen*)-R,而是會達到平衡。因此我們可以藉由數值分析方法計算出CoII(Salen*)在MA系統的平衡常數(Keq = 2.4 × 107 M-1)。從反應的自由基濃度可以推論出CoII(Salen*)在VAc聚合反應中主要是以等價交換反應(degenerative transfer, DT)主導高分子的成長,而在MA的系統中是以可逆鏈終止反應(reversible termination, RT)為主要的反應路徑。
用CoIII(Salen*)-PVAc當作大分子起使劑進行MA聚合反應,在額外添加CoII(Salen*)的條件下能成功合成出PVAc-b-PMA嵌段共聚物,此外PVAc-b-PAN也成功地被合成出來。
Abstract
The cobalt(II) [N,N‘-bis(3,5-di-tert-butylsalicyli-dene)-1,2-cyclohexanediamine] (CoII(Salen*)) could be mediated in the controlled/living radical polymerization of vinyl acetate and methyl acrylate successfully. The poly(vinyl acetate) (VAc) and poly(methyl acrylate) (MA) with living characters were obtained.
In VAc system, the PVAc polymer chains were growth with conversion linearly and agree to the theoretical molecular weight. The conversion could arrive to 60% with narrow polydispersity index (PDI) were between 1.09 and 1.25. All CoII(Salen*) transform to CoIII(Salen*)-R during induction period. Because of one chain per catalyst, the equilibrium constant could be estimated (> 109 M-1). The macro-initiator, CoIII(Salen*)-PVAc was also synthesized and could be performed in the PVAc chain extension with additives (THF and pyridine).
In MA system, the PMA with high conversion (> 60%) and low PDI (1.20~1.30) were obtained. The polymer chains were growth with conversion linearly and agree to the theoretical molecular weight. The equilibrium between cobalt(II) and organo-cobalt(III) species in methyl acrylate polymerization was followed by UV-vis spectroscopy and the equilibrium constant was determined to be 2.4 × 107 M-1. The kinetic studies showed the mechanism of polymerization of VAc could be degenerative transfer (DT) major and the MA system could be reversible termination (RT) major.
The facile formation of block copolymers of PVAc like PVAc-b-PMA (poly(vinyl acetate)-block-poly(methyl acrylate)) and PVAc-b-PAN (poly(vinyl acetate)-block-poly(acrylonitrile)) illustrates the unusual capability of the cobalt Salen* catalyst system to generate new applications in materials science.
論文目錄
摘要 I
Abstract II
謝誌 III
本文目錄 IV
圖目錄 VI
Scheme目錄 IX
表目錄 IX
1. Morton, M. Rubber technology; Van Nostrand Reinhold Company, 1987.
2. Perry, J. The rubber industry; Longmans, Green and co., 1946.
3. Painter, P. C.; Coleman, M. M. Fundamentals of polymer science; Technomic Lancaster, PA, 1997; Vol. 299.
4. Everton, C. The Story of Billiards and Snooker; Cassell, 1979.
5. Pinch, T. J.; Bijker, W. E. The social construction of technological systems: New directions in the sociology and history of technology 1987, 17.
6. Morawetz, H. Polymers: The origins and growth of a science; Courier Dover Publications, 2002.
7. Staudinger, H. Trans. Faraday Soc. 1933, 29, 18.
8. Tobolsky, A. V.; Mark, H. F. Polymer science and materials; John Wiley & Sons, 1971; Vol. 1.
9. Kauffman, G. B. Journal of Chemical Education 1988, 65, 803.
10. Carothers, W. H. Chem.Rev. 1931, 8, 353.
11. Ziegler, K. Angew. Chem 1952, 64, 323.
12. Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 541.
13. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem.Soc. 1955, 77, 1708.
14. Natta, G. SPE. J 1959, 15, 373.
15. Grubbs, R. H. Angew. Chem. Int. Ed. 2006, 45, 3760.
16. Flory, P. J. Principles of polymer chemistry; Cornell University Press, 1953.
17. Laylin, J. K. Nobel laureates in chemistry, 1901-1992; Wiley-VCH, 1993; Vol. 1.
18. Szwarc, M. Nature 1956, 178, 1168.
19. Szwarc, M. Adv. Polym. Sci. 1983, 49, 1.
20. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. Rev. 2001, 101, 3747.
21. Morton, M.; Fetters, L. J. Rubber Chemistry and Technology 1975, 48, 359.
22. Morton, M. Anionic polymerization: principles and practice; Academic press New York, 1983.
23. Crivello, J.; Lam, J. Macromolecules 1977, 10, 1307.
24. Aoshima, S.; Kanaoka, S. Chem. Rev. 2009, 109, 5245.
25. Kennedy, J. P. Cationic polymerization of olefins: a critical inventory. 1975.
26. Bailey, W. Pergamon Press plc, Comprehensive Polymer Science: the Synthesis, Characterization, Reactions & Applications of Polymers. 1989, 3, 283.
27. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147.
28. Saegusa, T.; Goethals, E. Ring-opening polymerization; ACS Publications, 1977.
29. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
30. Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
31. Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93.
32. Matyjaszewski, K., ACS Symp. Ser. 2003, Vol. 854.
33. Fischer, H. Chem Rev 2001, 101, 3581.
34. Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661.
35. Poli, R. Angew. Chem. Int. Ed. 2006, 45, 5058.
36. Yamago, S. Chem. Rev. 2009, 109, 5051.
37. Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921.
38. Kamigaito, M.; Ando, T.; Sawamoto, M. Chem Rev 2001, 101, 3689.
39. Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270.
40. Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
41. Favier, A.; Charreyre, M.-T. Macromol. Rapid Comm. 2006, 27, 653.
42. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Chem. Rev. 2006, 106, 3936.
43. Goto, A.; Ohno, K.; Fukuda, T. Macromolecules 1998, 31, 2809.
44. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.
45. Moad, G.; Rizzardo, E.; Thang, S. H. Aust J. Chem. 2005, 58, 379.
46. Ting, S. R. S.; Granville, A. M.; Quémener, D.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Aust. J. Chem. 2007, 60, 405.
47. Postma, A.; Davis, T. P.; Li, G.; Moad, G.; O'Shea, M. S. Macromolecules 2006, 39, 5307.
48. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2006, 59, 669.
49. Gaynor, S.; Matyjaszewski, K. In ACS Symp. Ser. 1998; Vol. 685, p 396.
50. Kwak, Y.; Goto, A.; Fukuda, T.; Kobayashi, Y.; Yamago, S. Macromolecules 2006, 39, 4671.
51. Mueller, A. H. E.; Yan, D.; Litvinenko, G.; Zhuang, R.; Dong, H. Macromolecules 1995, 28, 7335.
52. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987.
53. Fukuda, T.; Goto, A. Macromol. Rapid Comm. 1997, 18, 683.
54. Sciannamea, V.; Jerome, R.; Detrembleur, C. Chem. Rev. 2008, 108, 1104.
55. Solomon, D. H. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5748.
56. Patten, T. E.; Xia, J. H.; Abernathy, T.; Matyjaszewski, K. Science 1996, 272, 866.
57. Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689.
58. Matyjaszewski, K. Macromolecules 2012, 45, 4015.
59. Magenau, A. J. D.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Science 2011, 332, 81.
60. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M. J. Am. Chem. Soc. 1994, 116, 7943.
61. Arvanitopoulos, L. D.; Greuel, M. P.; Harwood, H. J. Polym. Prepr. 1994, 208, 402.
62. Wayland, B. B.; Basickes, L.; Mukerjee, S.; Wei, M. L.; Fryd, M. Macromolecules 1997, 30, 8109.
63. Debuigne, A.; Caille, J. R.; Jerome, R. Angew. Chem. Int. Ed. 2005, 44, 1101.
64. Debuigne, A.; Poli, R.; Jerome, C.; Jerome, R.; Detrembleur, C. Prog. Polym. Sci. 2009, 34, 211.
65. Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 2008, 41, 2368.
66. Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874.
67. Yamago, S.; Lida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 13666.
68. Ouchi, M.; Terashima, T.; Sawamoto, M. Chem. Rev. 2009, 109, 4963.
69. Rizzardo, E.; Solomon, D. H. Polym. Bull. 1979, 1, 529.
70. Moad, G.; Rizzardo, E.; Solomon, D. H. Macromolecules 1982, 15, 909.
71. Solomon, D.; Rizzardo, E.; Cacioli, P. In Chem. Abstr 1985; Vol. 102, p 221335q.
72. Moad, G.; Rizzardo, E.; Solomon, D. H. Macromolecules 1982, 15, 909.
73. Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. J. Am. Chem. Soc. 1999, 121, 3904.
74. Patten, T.; Matyjaszewski, K. Acc. Chem. Res 1999, 32, 895.
75. Wakioka, M.; Baek, K. Y.; Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 2002, 35, 330.
76. Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997, 30, 4507.
77. Hester, J.; Banerjee, P.; Won, Y.-Y.; Akthakul, A.; Acar, M.; Mayes, A. Macromolecules 2002, 35, 7652.
78. Jakubowski, W.; Matyjaszewski, K. Angew. Chem. In.t Ed. 2006, 45, 4482.
79. Matyjaszewski, K.; Tsarevsky, N. V. Nat Chem 2009, 1, 276.
80. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J. Y.; Braunecker, W. A.; Tsarevsky, N. V. Proc. Natl. Acad. Sci., USA 2006, 103, 15309.
81. Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Polym. Int. 2000, 49, 993.
82. Roth, P. J.; Boyer, C.; Lowe, A. B.; Davis, T. P. Macromol. Rapid. Comm. 2011, 32, 1123.
83. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2009, 62, 1402.
84. Rizzardo, E.; Solomon, D. H. Aust. J. Chem. 2012, 65, 945.
85. Benaglia, M.; Chiefari, J.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang, S. H. J. Am. Chem. Soc. 2009, 131, 6914.
86. Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39, 8219.
87. Li, S.; de Bruin, B.; Peng, C. H.; Fryd, M.; Wayland, B. B. J. Am. Chem. Soc. 2008, 130, 13373.
88. Debuigne, A.; Michaux, C.; Jerome, C.; Jerome, R.; Poli, R.; Detrembleur, C. Chem. Eur. J. 2008, 14, 7623.
89. Debuigne, A.; Champouret, Y.; Jerome, R.; Poli, R.; Detrembleur, C. Chem. Eur. J. 2008, 14, 4046.
90. Lu, Z.; Fryd, M.; Wayland, B. B. Macromolecules 2004, 37, 2686.
91. Peng, C.-H.; Fryd, M.; Wayland, B. B. Macromolecules 2007, 40, 6814.
92. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 2008, 41, 2368.
93. Poli, R. Chem. Eur. J. 2011, 1513.
94. Debuigne, A.; Warnant, J.; Jerome, R.; Voets, I.; de Keizer, A.; Stuart, M. A.; Detrembleur, C. Macromolecules 2008, 41, 2353.
95. Debuigne, A.; Willet, N.; Jerome, R.; Detrembleur, C. Macromolecules 2007, 40, 7111.
96. Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.
97. Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 7420.
98. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
99. Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801.
100. Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124, 6335.
101. Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 有機鈷金屬錯合物 CoII(BpyBph) 在可控/活性自由基聚合反應上的研究
2. 水溶性單體在水相中以鈷金屬錯合物催化之活性自由基聚合
3. 銅金屬錯合物催化原子轉移自由基聚合反應
4. 利用紫質鈷金屬錯合物引導之醋酸乙烯酯的活性自由基聚合反應
5. 1. 功能性高分子 PDPyMA 的合成與應用 2. 矽膠交聯之熟成控制 3. Co(Salen*) 在水相中催化之自由基聚合反應
6. 有機鈷金屬錯合物CoII(Salen*)在可控/活性自由基聚合反應的機理研究與應用
7. 利用不同鈷金屬錯合物在醋酸乙烯酯活性自由基聚合之機理研究
8. 原子轉移自由基聚合反應的配基開發與高分子結構對螢光放光的影響
9. 在環戊二烯鈦的調控下合成聚苯乙烯與聚環己內酯之嵌段共聚物
10. 含芘分子起始劑在光誘發原子轉移自由基聚合之應用與含芘分子之聚苯乙烯的螢光放光增強現象
11. 新穎功能性高分子 Poly(Di(pyridin-2-yl)methyl acrylate) (PDPyMA) 的合成以及在異相催化反應的應用
12. 有機金屬錯合物在開環與可控/活性自由基聚合的應用
13. 結合活性自由基聚合和開環聚合以合成嵌段共聚物
14. 有機鈷金屬錯合物自由基聚合與原子轉移自由基聚合所結合的高分子合成方法
15. 功能性高分子 Poly(2,2'-(1-methoxy-2-(4-vinylphenyl)ethane-1,1-diyl)dipyridine-co-N-isopropylacrylamide) (P(MVP-co-NIPAM)) 的合成以及在異相催化反應的應用
 
* *