帳號:guest(18.225.55.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭旭明
作者(外文):Hsiao, Hsu-Ming
論文名稱(中文):多重孔洞MFI沸石材料的合成, 形貌調控及其於異相催化反應的研究
論文名稱(外文):Synthesis and Morphological Control of Hierarchical MFI Zeolite Materials and Their Applications in Heterogeneous Catalysis
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Ming
口試委員(中文):林弘萍
洪嘉呈
楊家銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023556
出版年(民國):102
畢業學年度:101
語文別:中文英文
論文頁數:104
中文關鍵詞:中孔洞沸石異相催化
外文關鍵詞:silicalite-1TS-1ZSM-5Friedel-Crafts alkylationMFI
相關次數:
  • 推薦推薦:0
  • 點閱點閱:216
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本論文旨在利用自行合成之兩端親水、中間疏水的結構導向試劑,應用於MFI沸石的合成。首先,藉由親核性取代反應,合成出兩端具四級銨官能基,中間為丙氧基分子的結構導向試劑 (命名為 N3(PO)n-N3,n = 2、32、67 )。接著進一步研究改變疏水端長度及結構導向試劑含量對於silicalite-1沸石形貌、孔洞的影響,及多重孔洞ZSM-5沸石對於異相催化的研究。在水熱法合成silicalite-1部分,添加N3-(PO)67-N3、N3-(PO)32-N3 可以合成具有層狀結構的silicalite-1,其中N3-(PO)32-N3可合成出具花朵型的形貌,而添加N3-(PO)2-N3為結構導向試劑時,可以合成出具有自我支撐結構能力並垂直交錯而成的silicalite-1,從氮氣吸脫附鑑定則可以找到微孔洞及狹長型的中孔洞分布。在合成TS-1、ZSM-5的部分,添加N3-(PO)2-N3同樣可以合成具有自我支撐結構能力並垂直交錯而成的TS-1,而添加N3-(PO)32-N3可以合成出花朵型層狀結構的ZSM-5,與傳統ZSM-5相比,具有較高的表面積及多重孔洞的產生。因此,本研究以Friedel-Crafts烷化反應進行催化測試,發現多重孔洞ZSM-5具有較高的轉化率,提升了催化活性。
In this study, a new-type of triblock structure directing agent (SDA) with hydrophobic middle part and hydrophilic ends was prepared and used in MFI zeolite synthesis. The SDA with propoxy middle part and quaternary ammonium ends (N3(PO)n-N3,n = 2、32、67) was synthesized by nucleophilic substitution reaction. The effects of the length of SDA on the morphology and catalytic activity of MFI zeolite was investigated by tuning the concentration of SDA with various length of hydrophobic part. In the synthesis of silicalite-1, lamellar structure was obtained by using N3-(PO)67-N3、N3-(PO)32-N3 as SDA, flower-like morphology was formed with N3-(PO)32-N3, and furthermore, self-pillared, intersectional and compressed octahedron was obtained by using N3-(PO)2-N3 as SDA. N2 physisorption isotherm showed that these prepared materials contain slit-type mesopores and zeolitic micropores. In the synthesis of TS-1 & ZSM-5, the self-pillared and intersectional structure of TS-1 was successfully obtained by using N3-(PO)2-N3 as SDA, and lamellar structure of ZSM-5 was also obtained by using N3-(PO)32-N3 as SDA. The hierarchical ZSM-5 has high BET surface area, large pore volume and exhibited much better catalytic activity in Friedel-Craft alkylations as compared to conventional ZSM-5.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XIII
第 1 章 緒論 1
1-1 沸石 1
1-1-1 沸石簡介 1
1-1-2 沸石結構及分類 3
1-1-3 沸石酸性及觸媒上的應用 6
1-1-4 MFI沸石 9
1-1-5 MFI沸石的合成 11
1-2 具多重孔洞的沸石材料 14
1-2-1 後合成法 16
1-2-1-1 脫鋁法 16
1-2-1-2 脫矽法 18
1-2-2 硬模板法 19
1-2-3 軟模板法 21
1-3 研究動機 27
第 2 章 實驗部分 28
2-1 實驗藥品 28
2-2 結構導向試劑的合成與分析 29
2-2-1 具四級銨分子合成 32
2-2-2 兩性高分子的合成 32
2-3 水熱法合成silicalite-1 33
2-4 水熱法合成 TS-1 34
2-5 水熱法合成 ZSM-5 34
2-6 Friedel-Crafts 烷化反應 35
2-7 樣品命名 36
2-8 實驗鑑定儀器 37
2-8-1 X光粉末繞射儀 (Powdr X-Ray Diffractometer, PXRD) 37
2-8-2 熱重分析儀 (Thermo Gravimetric Analyzer, TGA) 39
2-8-3 氮氣物理吸脫附 (N2 physisorption) 39
2-6-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 44
2-6-5 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 45
2-6-6 固態核磁共振光譜 (Solid state NMR) 46
2-6-7 傅立葉紅外線轉換光譜儀 (FT-IR spectrometer) 48
2-6-8紫外光-可見光光譜儀 (UV-Vis spectrophotometer) 48
2-6-9 氣相層析 (Gas chromatography, GC) 49
第 3 章 結果與討論 51
3-1 結構導向試劑的合成與鑑定 51
3-2 水熱法合成silicalite-1 55
3-2-1 以N3-(PO)67-N3合成之silicalite-1的探討 55
3-2-2 以N3-(PO)32-N3合成之silicalite-1的探討 62
3-2-3 以N3-(PO)2-N3合成之silicalite-1的探討 69
3-2-4 傅立葉紅外線光譜(FT-IR)對沸石結構的分析 75
3-3 合成時間對silicalite-1的影響之研究 78
3-3-1 縮短合成時間對於沸石成長的影響 78
3-3-2 水熱時間對N3-(PO)2-N3合成silicalite-1的影響 83
3-4 水熱法合成TS-1、ZSM-5沸石材料的研究 86
3-4-1 N3-(PO)2-N3對TS-1合成的探討 86
3-4-2 N3-(PO)n-N3對ZSM-5合成的探討 90
3-4-3 Friedel-Crafts烷化反應 95
第 4 章 結論 98
第 5 章 參考文獻 99
[1] D. H. Everett, R. A. W. H., L. Moscou, R. A. Pierotti, J. RouquØrol, T. Siemieniewska, Pure and Applied Chemistry 1985, 57, 603.
[2] A.F.Cronstedt, som kallsa Zeolites, Vol. 17, 1756.
[3] Ch. Baerlocher, L. B. M. a. D. H. O., Atlas of Zeolite Framework Types, 6th revised edition, 2007.
[4] Davis, M. E., R. F. Lobo, Chemistry of Materials 1992, 4, 756-768.
[5] Barrer, R. M., Journal of the Chemical Society 1948, 2158.
[6] E. M. Flanigen, J. M. B., R. W. Grose, J. P. Cohen, R. L. Patton,, R. M. K. a. J. V. Smith, Nature 1978, 271, 512-516.
[7] Landolt, R. J. A. a. G. R., in US3702886, 1972.
[8] Szostak, R., Handbook of Molecular Sieves 1992.
[9] Barrer, R. M., Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
[10] Corma, A., Chemical Reviews 1997, 97, 2373-2420.
[11] Corma, A., Journal of Catalysis 2003, 216, 298-312.
[12] Flanigen, E. M.; R. L. Patton, S. T. Wilson, in Studies in Surface Science and Catalysis, Vol. Volume 37 (Eds.: P.J. Grobet, W. J. M. E. F. V., G. Schulz-Ekloff), Elsevier, 1988, pp. 13-27.
[13] Wilson, S. T.; B. M. Lok; C. A. Messina; T. R. Cannan, E. M. Flanigen, Journal of the American Chemical Society 1982, 104, 1146-1147.
[14] Anderson, M. W.; O. Terasaki; T. Ohsuna; A. Philippou; S. P. MacKay; A. Ferreira; J. Rocha, S. Lidin, Nature 1994, 367, 347-351.
[15] M. Taramazso, G. P. a. B. N., in US Patent, Vol. 4, 1983, p. 410 501.
[16] Barrer, R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves 1978.
[17] Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use 1974.
[18] Zhao, X. S.; G. Q. Lu, G. J. Millar, Industrial & Engineering Chemistry Research 1996, 35, 2075-2090.
[19] Morris, R. E., Journal of Materials Chemistry 2005, 15, 931.
[20] L. B. McCusker, F. L. a. G. E., Pure and Applied Chemistry 2001, 73, 381-394.
[21] Tung, S. E., E. McIninch, Journal of Catalysis 1965, 4, 586-593.
[22] Tsai, W.-T., Journal of Loss Prevention in the Process Industries 2002, 15, 147-157.
[23] P.A. Jacobs, E. M. F., J.C. Jansen, Herman van Bekkum, Introduction to Zeolite Science and Practice, Elsevier, U.S.A.
[24] Flanigen, E. M.; J. M. Bennett; R. W. Grose; J. P. Cohen; R. L. Patton; R. M. Kirchner, J. V. Smith, Nature 1978, 271, 512-516.
[25] Olson, D. H.; G. T. Kokotailo; S. L. Lawton, W. M. Meier, the Journal of Physical Chemistry 1981, 85, 2238-2243.
[26] van Koningsveld, H.; H. van Bekkum, J. C. Jansen, Acta Crystallographica Section B 1987, 43, 127-132.
[27] Wei, J., Journal of Catalysis 1982, 76, 433-439.
[28] Čejka, J. i., H. v. Bekkum, Zeolites and ordered mesoporous materials: progress and prospects : the 1st FEZA School on Zeolites, 2005.
[29] Auerbach, S. M.; K. A. Carrado, P. K. Dutta, Handbook of Zeolite Science and Technology, 2003.
[30] Persson, A. E.; B. J. Schoeman; J. Sterte, J. E. Otterstedt, Zeolites 1994, 14, 557-567.
[31] Mintova, S.; M. Reinelt; T. H. Metzger; J. Senker, T. Bein, Chemical Communications 2003, 0, 326-327.
[32] Cundy, C. S., P. A. Cox, Microporous and Mesoporous Materials 2005, 82, 1-78.
[33] K.Byrappa, M. Yoshimura, Hydrothermal Synthesis and Growth of Zeolites, 2013.
[34] Rollmann Louis, D., in Inorganic Compounds with Unusual Properties?II, Vol. 173, AMERICAN CHEMICAL SOCIETY, 1979, pp. 387-395.
[35] Breck, D. W., Zeolite Molecular Sieves, Wilely, 1974.
[36] Rinaldi, R., F. Schuth, Energy & Environmental Science 2009, 2, 610-626.
[37] van Donk, S.; J. H. Bitter; A. Verberckmoes; M. Versluijs-Helder; A. Broersma, K. P. de Jong, Angewandte Chemie 2005, 117, 1384-1387.
[38] Perez-Ramirez, J.; C. H. Christensen; K. Egeblad; C. H. Christensen, J. C. Groen, Chemical Society Reviews 2008, 37, 2530-2542.
[39] Burton, A.; S. Elomari; C.-Y. Chen; R. C. Medrud; I. Y. Chan; L. M. Bull; C. Kibby; T. V. Harris; S. I. Zones, E. S. Vittoratos, Chemistry – A European Journal 2003, 9, 5737-5748.
[40] Corma, A.; M. J. Diaz-Cabanas; J. L. Jorda; F. Rey; G. Sastre, K. G. Strohmaier, Journal of the American Chemical Society 2008, 130, 16482-16483.
[41] Corma, A.; M. J. Diaz-Cabanas; J. Martinez-Triguero; F. Rey, J. Rius, Nature 2002, 418, 514-517.
[42] Freyhardt, C. C.; M. Tsapatsis; R. F. Lobo; K. J. Balkus, M. E. Davis, Nature 1996, 381, 295-298.
[43] Huang, L. R.; E. C. Cox; R. H. Austin, J. C. Sturm, Science 2004, 304, 987-990.
[44] Strohmaier, K. G., D. E. W. Vaughan, Journal of the American Chemical Society 2003, 125, 16035-16039.
[45] Wagner, P.; M. Yoshikawa; K. Tsuji; M. E. Davis; P. Wagner; M. Lovallo, M. Taspatsis, Chemical Communications 1997, 0, 2179-2180.
[46] Davis, M. E., Nature 2002, 417, 813-821.
[47] Tosheva, L., V. P. Valtchev, Chemistry of Materials 2005, 17, 2494-2513.
[48] Larsen, S. C., the Journal of Physical Chemistry C 2007, 111, 18464-18474.
[49] Hsu, C.-Y.; A. S. T. Chiang; R. Selvin, R. W. Thompson, the Journal of Physical Chemistry B 2005, 109, 18804-18814.
[50] Schoeman, B. J., Microporous and Mesoporous Materials 1998, 22, 9-22.
[51] Mintova, S.; V. Valtchev, I. Kanev, Zeolites 1993, 13, 102-106.
[52] Goa, Y.; H. Yoshitake; P. Wu, T. Tatsumi, Microporous and Mesoporous Materials 2004, 70, 93-101.
[53] Pavel, C. C.; S.-H. Park; A. Dreier; B. Tesche, W. Schmidt, Chemistry of Materials 2006, 18, 3813-3820.
[54] Pavel, C. C., W. Schmidt, Chemical Communications 2006, 0, 882-884.
[55] Jones, C. W.; S.-J. Hwang; T. Okubo, M. E. Davis, Chemistry of Materials 2001, 13, 1041-1050.
[56] Parikh, P. A.; N. Subrahmanyam; Y. S. Bhat, A. B. Halgeri, Journal of Molecular Catalysis 1994, 88, 85-92.
[57] Apelian, M. R.; A. S. Fung; G. J. Kennedy, T. F. Degnan, the Journal of Physical Chemistry 1996, 100, 16577-16583.
[58] Kim, J.; M. Choi, R. Ryoo, Journal of Catalysis 2010, 269, 219-228.
[59] Lee, G. S.; J. J. Maj; S. C. Rocke, J. M. Garcés, Catalysis Letters 1989, 2, 243-247.
[60] Janssen, A. H.; A. J. Koster, K. P. de Jong, the Journal of Physical Chemistry B 2002, 106, 11905-11909.
[61] Kerr, G.; A. Chester, D. Olson, Catalysis Letters 1994, 25, 401-402.
[62] Ribeiro Carrott, M. M. L.; P. A. Russo; C. Carvalhal; P. J. M. Carrott; J. P. Marques; J. M. Lopes; I. Gener; M. Guisnet, F. Ramôa Ribeiro, Microporous and Mesoporous Materials 2005, 81, 259-267.
[63] Scherzer, J., in Catalytic Materials: Relationship Between Structure and Reactivity, Vol. 248, American Chemical Society, 1984, pp. 157-200.
[64] Beyer, H. K., I. Belenykaja, in Studies in Surface Science and Catalysis, Vol. Volume 5 (Eds.: B. Imelik, C. N. Y. B. T. J. C. V. G. C., H. Praliaud), Elsevier, 1980, pp. 203-210.
[65] Goyvaerts, D.; J. A. Martens; P. J. Grobet, P. A. Jacobs, in Studies in Surface Science and Catalysis, Vol. Volume 63 (Eds.: G. Poncelet, P. A. J. P. G., B. Delmon), Elsevier, 1991, pp. 381-395.
[66] Johan, C. G.; A. A. P. Louk; A. M. Jacob, P. R. Javier, Chemistry - A European Journal 2005, 11, 4983-4994.
[67] van Donk, S.; A. H. Janssen; J. H. Bitter, K. P. de Jong, Catalysis Reviews 2003, 45, 297-319.
[68] Dessau, R. M.; E. W. Valyocsik, N. H. Goeke, Zeolites 1992, 12, 776-779.
[69] Čižmek, A.; B. Subotić; R. Aiello; F. Crea; A. Nastro, C. Tuoto, Microporous Materials 1995, 4, 159-168.
[70] Groen, J. C.; J. A. Moulijn, J. Pérez-Ramírez, Industrial & Engineering Chemistry Research 2007, 46, 4193-4201.
[71] Groen, J. C.; S. Abelló; L. A. Villaescusa, J. Pérez-Ramírez, Microporous and Mesoporous Materials 2008, 114, 93-102.
[72] Groen, J. C.; T. Sano; J. A. Moulijn, J. Pérez-Ramírez, Journal of Catalysis 2007, 251, 21-27.
[73] D. M. Millar, J. M. G., U.S.A, 1997.
[74] Pérez-Ramírez, J.; D. Verboekend; A. Bonilla, S. Abelló, Advanced Functional Materials 2009, 19, 3972-3979.
[75] Groen, J. C.; J. C. Jansen; J. A. Moulijn, J. Pérez-Ramírez, the Journal of Physical Chemistry B 2004, 108, 13062-13065.
[76] Boisen, A.; I. Schmidt; A. Carlsson; S. Dahl; M. Brorson, C. J. H. Jacobsen, Chemical Communications 2003, 0, 958-959.
[77] Garcı́a-Martı́nez, J.; D. Cazorla-Amorós; A. Linares-Solano, Y. S. Lin, Microporous and Mesoporous Materials 2001, 42, 255-268.
[78] Wang, D.; G. Zhu; Y. Zhang; W. Yang; B. Wu; Y. Tang, Z. Xie, New Journal of Chemistry 2005, 29, 272-274.
[79] Chu, N.; J. Wang; Y. Zhang; J. Yang; J. Lu, D. Yin, Chemistry of Materials 2010, 22, 2757-2763.
[80] Yang, Z. X.; Y. D. Xia, R. Mokaya, Advanced Materials 2004, 16, 727-732.
[81] Fan, W.; M. A. Snyder; S. Kumar; P.-S. Lee; W. C. Yoo; A. V. McCormick; R. Lee Penn; A. Stein, M. Tsapatsis, Nat Mater 2008, 7, 984-991.
[82] Jacobsen, C. J. H.; C. Madsen; J. Houzvicka; I. Schmidt, A. Carlsson, Journal of the American Chemical Society 2000, 122, 7116-7117.
[83] Schmidt, I.; A. Boisen; E. Gustavsson; K. Ståhl; S. Pehrson; S. Dahl; A. Carlsson, C. J. H. Jacobsen, Chemistry of Materials 2001, 13, 4416-4418.
[84] Chen, H.; J. Wydra; X. Zhang; P.-S. Lee; Z. Wang; W. Fan, M. Tsapatsis, Journal of the American Chemical Society 2011, 133, 12390-12393.
[85] Kresge, C. T.; M. E. Leonowicz; W. J. Roth; J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
[86] Na, K.; M. Choi, R. Ryoo, Microporous and Mesoporous Materials 2013, 166, 3-19.
[87] Karlsson, A.; M. Stöcker, R. Schmidt, Microporous and Mesoporous Materials 1999, 27, 181-192.
[88] Wang, H., T. J. Pinnavaia, Angewandte Chemie International Edition 2006, 45, 7603-7606.
[89] Choi, M.; H. S. Cho; R. Srivastava; C. Venkatesan; D.-H. Choi, R. Ryoo, Nat Mater 2006, 5, 718-723.
[90] Vuong, G.-T., T.-O. Do, Journal of the American Chemical Society 2007, 129, 3810-3811.
[91] Xiao, F.-S.; L. Wang; C. Yin; K. Lin; Y. Di; J. Li; R. Xu; D. S. Su; R. Schlögl; T. Yokoi, T. Tatsumi, Angewandte Chemie International Edition 2006, 45, 3090-3093.
[92] Choi, M.; K. Na; J. Kim; Y. Sakamoto; O. Terasaki, R. Ryoo, Nature 2009, 461, 246-249.
[93] Na, K.; C. Jo; J. Kim; K. Cho; J. Jung; Y. Seo; R. J. Messinger; B. F. Chmelka, R. Ryoo, Science 2011, 333, 328-332.
[94] W. Chester , E. D., Zeolite Characterization and Catalysis, 2009.
[95] Pine, S. H., B. L. Sanchez, the Journal of Organic Chemistry 1971, 36, 829-832.
[96] Martins, A.; J. Piai; I. A. Schuquel; A. Rubira, E. Muniz, Colloid and Polymer Science 2011, 289, 1133-1144.
[97] Watanabe, R.; T. Yokoi, T. Tatsumi, Journal of Colloid and Interface Science 2011, 356, 434-441.
[98] Jansen, J. C.; F. J. van der Gaag, H. van Bekkum, Zeolites 1984, 4, 369-372.
[99] Morales-Pacheco, P.; F. Alvarez-Ramirez; P. Del Angel; L. Bucio, J. M. Domínguez, the Journal of Physical Chemistry C 2007, 111, 2368-2378.
[100] Ricchiardi, G.; A. Damin; S. Bordiga; C. Lamberti; G. Spanò; F. Rivetti, A. Zecchina, Journal of the American Chemical Society 2001, 123, 11409-11419.
[101] Takei, T.; T. Akita; I. Nakamura; T. Fujitani; M. Okumura; K. Okazaki; J. Huang; T. Ishida, M. Haruta, in Advances in Catalysis, Vol. Volume 55 (Eds.: Bruce, C. G., C. J. Friederike), Academic Press, 2012, pp. 1-126.
[102] Davies, L. J.; P. McMorn; D. Bethell; P. C. B. Page; F. King; F. E. Hancock, G. J. Hutchings, Journal of Catalysis 2001, 198, 319-327.
[103] Bhaumik, A.; P. Mukherjee, R. Kumar,
[104] Li, Y. G.; Y. M. Lee, J. F. Porter, Journal of Materials Science 2002, 37, 1959-1965.
[105] Müller, M.; G. Harvey, R. Prins, Microporous and Mesoporous Materials 2000, 34, 135-147.
[106] Thibault-Starzyk, F.; I. Stan; S. Abelló; A. Bonilla; K. Thomas; C. Fernandez; J.-P. Gilson, J. Pérez-Ramírez, Journal of Catalysis 2009, 264, 11-14.
[107] Mei, C.; P. Wen; Z. Liu; H. Liu; Y. Wang; W. Yang; Z. Xie; W. Hua, Z. Gao, Journal of Catalysis 2008, 258, 243-249.
[108] Liu, Y., T. J. Pinnavaia, Journal of Materials Chemistry 2004, 14, 1099-1103.
[109] Iovel, I.; K. Mertins; J. Kischel; A. Zapf, M. Beller, Angewandte Chemie International Edition 2005, 44, 3913-3917.
[110] Reddy, V. P., G. K. S. Prakash, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., 2000.
[111] Clark, J. H.; A. P. Kybett; D. J. Macquarrie; S. J. Barlow, P. Landon, Journal of the Chemical Society, Chemical Communications 1989, 0, 1353-1354.
[112] Shrigadi, N. B.; A. B. Shinde, S. D. Samant, Applied Catalysis A: General 2003, 252, 23-35.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *