帳號:guest(3.15.228.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾宇如
論文名稱(中文):利用電子自旋共振光譜探究侷限效應對生物分子之動態結構的影響
論文名稱(外文):An Assessment of Nanoconfinement Effects on Biomolecular Structures and Dynamics by ESR Spectroscopy Methods
指導教授(中文):江昀緯
口試委員(中文):洪嘉呈
黃聖言
江昀緯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023554
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:130
中文關鍵詞:電子自旋共振侷限效應
外文關鍵詞:ESRconfinement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,為了研究生物分子真實的結構與構型變化,侷限效應逐漸受到重視。奈米尺寸的逆微胞與孔洞材料其共同特性包括熱穩定性高,可調變之尺度廣,容易形成均勻度高且大小一致的侷限空間,使之運用於研究侷限效應更具潛力。本研究利用定位自旋標記-電子自旋技術(SDSL-EPR)觀測Tempol以及生物分子Bcl-2-associated X protein(Bax)、T4溶菌酶(T4L)置入逆微胞與孔洞材料中之分子運動特性,並與ㄧ般溶液做比較,希望能具體描述奈米侷限效應對於生物分子之影響。
  利用連續波長與脈衝式電子自旋共振光譜(Cw/pulse ESR)進行研究,發現生物分子於逆微胞與孔洞材料中,均會造成分子運動速度減緩,代表兩者的確可產生侷限效果;但以結構分析來說,相較於一般純粹溶液,逆微胞中的Bax、孔洞材料中的T4L皆會產生結構遭受擾動的結果;進一步研究帶有標記之分子,一般純粹溶液中的水分子在低溫下會產生結冰的狀態(分子有明顯聚集情況),而在逆微胞與孔洞材料中於低溫下會維持無定型狀態(glassy amorphous state)。另一方面,加入海藻糖(trehalose)於逆微胞水相中希望能使水相擁擠並加強侷限效應,實驗結果發現加強效果不甚明顯;文獻中曾提到,trehalose會聚集在逆微胞極性部分的位置,因此利用自旋標記脂質研究trehalose與逆微胞壁上的作用力,發現使用Tempo PC以及5-PC均無法得到與文獻相同的資訊,因此驗證文獻之結果需待進一步的深入探究。
  本研究發現,逆微胞與孔洞材料對於研究侷限效應不全是正面的效果,逆微胞與蛋白質之間的靜電吸引力、蛋白質的選擇(等電位點之考慮)、孔洞材料大小與蛋白質大小關係可能是使用逆微胞與孔洞材料研究侷限效應之額外考量,而這些推測急待後續研究來證實。
Confinement has been demonstrated useful in accelerating the folding process, because of a compact folded protein occupying less volume than an unfolded protein. The scientists have researched on confinement for protein folding, protein diffusion, protein-protein interaction in the recent years. Reverse micelles and mesoporous materials have the common advantages such as high stability, easily tunable size, homogeneous pore structures, and consequently are used to encapsulate molecules for confinement study. In this study, we have explored the confinement effect on biomolecular structure and dynamics by site directed spin label(SDSL) and Cw/pulsed ESR techniques. The molecules we used are tempol, and proteins including Bcl-2-associated X protein(Bax) and T4 lysozyme(T4L).
In Part I, we trap the biomolecules in reverse micelles and mesoporous materials to understand the confinement effect. The motions of biomolecules in nanoconfiment are slower than in bulk solution. The results show the confinement effect exists but the structures of biomolecules are distorted slightly. Moreover, we find that the water molecules in the nanochannels stay on amorphous state but not freezing at cryogenic temperature.
In Part II, we add trehalose in the water pool of reverse micelles to enhance the confinement effect. The spectra change hardly whether the trehalose is added or not. According to the literature, the trehalose interacts with polar surfactant headgroups. We dope the reverse micelles with spin-labeled lipid(tempo PC, 5-PC) to compose reverse micelles. However, the spectra of the spin-labeled lipid change little with trehalose.
Nanoconfinement effects play an important role in protein conformational structure. In this study, we show the conformations of the T4L proteins are somewhat distorted in the mesoporous materials with the pore sizes approximately 8 nm, which is apparently large enough to accommodate the studied proteins. This result is opposed to what we have found for the nano-confined structure of the 26-mer-long polypeptide whose structure was demonstrated to remain unchanged between the bulk solvent and the mesoporous materials. At the current stage, our results point out that the ratio of the pore size and the studied molecular size might be a key to the success for confining a molecule in the nanochannels while leaving its conformation intact. Moreover, it is also possible that the nanoconfinement effects could result in a change of the state in the conformational potential of a protein. Further investigations of the nanoconfinement effect are warranted.
摘要.................................................... I
Abstract................................................III
目錄.................................................... V
圖目錄...................................................VIII
表目錄.................................................. XII
第一章 緒論.............................................. 1
1.1 電子自旋共振(ESR)光譜在生物物理上之應用.................. 1
1.2 侷限效應對生物分子之重要性.............................. 3
1.3 侷限效應(confinement effect)之簡介.................... 5
1.3.1 逆微胞(reverse micelle)之簡介.......................6
1.3.2 奈米孔洞材料(mesoporous material)之簡介..............8
1.4 蛋白質簡介........................................... 10
1.4.1 Bcl-2-associated X protein(Bax)...................10
1.4.2 T4溶菌酶(T4 Lysozyme, T4L).........................12
1.5 研究動機與目的 ........................................13
第二章 儀器介紹與原理...................................... 14
2.1 動態散射式粒徑分析儀(Dynamic Light Scattering, DLS).... 14
2.2 圓二色旋光光譜儀(Circular Dichroism, CD).............. 16
2.3 電子自旋共振光譜儀(Electron Spin Resonance, ESR)...... 21
2.3.1 量測原理........................................... 21
2.3.2 光譜簡介........................................... 24
2.3.3 自旋共振原理....................................... 26
2.3.4 超微細偶合作用(Hyperfine interaction)............... 28
2.3.5 定位自旋標記之應用(application of SDSL-ESR)......... 31
2.3.6 硝基氧自旋標記物的轉動動力學與ESR光譜線形關係........... 34
2.3.7 ESR光譜距離量測.................................... 40
2.3.8 雙重電子-電子共振(DEER)光譜之距離量測................. 41
第三章 樣品製備與儀器測量方法.............................. 46
3.1 實驗流程............................................. 46
3.1.1 Bcl-2-associated X protein (Bax)蛋白的選殖、表現與純化...................................................... 46
3.1.2 T4溶菌酶(T4 Lysozyme, T4L)蛋白選殖、表現與純化 ........49
3.1.3 SDS-PAGE原理與製備................................. 51
3.1.4 Bradford protein–binding assay判定濃度實驗......... 55
3.1.5 定位自旋標記樣品之製備............................... 57
3.1.6 逆微胞溶液包覆生物分子製備............................ 58
3.1.7 利用動態散射式粒徑分析儀(DLS)測量逆微胞之粒徑大小........ 61
3.1.8 ESR樣品製備 ........................................63
3.2 儀器測量方法......................................... 64
3.2.1 動態散射粒徑分析儀(Dynamic Light Scattering, DLS)測量 64
3.2.2 圓二色旋光光譜儀(Circular Dichroism, CD)測量......... 64
3.2.3 連續波型電子自旋共振光譜測量(Cw-ESR).................. 64
3.2.4 脈衝型電子自旋共振光譜測量(pulse-ESR)................. 65
3.3 藥品與儀器........................................... 68
3.3.1 實驗藥品........................................... 68
3.3.2 實驗儀器........................................... 69
第四章 結果與討論........................................ 71
4.1 利用生物分子研究逆微胞與孔洞材料之侷限效應................ 71
4.1.1 Tempol/DI H2O在水溶液與逆微胞中 (AOT/pentane w0=34) 於200 K之Cw-ESR光譜分析.................................... 71
4.1.2 Tempol/DI H2O在逆微胞中 (AOT/pentane w0=34) 於不同溫度之Cw-ESR光譜分析........................................... 73
4.1.3 Tempol在逆微胞中 (AOT/isooctane w0=20) 於不同環境下且經-80℃冷凍前後於不同溫度之Cw-ESR光譜分析...................... 75
4.1.4 Tempol在水溶液與逆微胞中 (AOT/isooctane w0=20) 於200 K之Cw-ESR光譜分析........................................... 79
4.1.5 Bax 67R1在緩衝溶液中於不同溫度之Cw-ESR光譜分析......... 80
4.1.6 Bax 67R1在逆微胞中 (AOT/isooctane w0=20) 於不同溫度之Cw-ESR光譜分析.............................................. 82
4.1.7 Bax 67C於298 K之CD光譜分析......................... 83
4.1.8 Bax 67R1在30% (v/v) glycerol vs. 中孔洞材料SBA15於不同溫度之Cw-ESR光譜分析....................................... 84
4.1.8 不同位點之Bax在40% (v/v) glycerol, 40% (w/w) ficoll vs. 孔洞材料SBA15於不同溫度之Cw-ESR光譜分析..................... 87
4.1.9 利用T4 溶菌酶研究在孔洞材料中的結構變化................ 88
4.1.10 本節討論.......................................... 93
4.2 利用海藻糖 (trehalose) 加強逆微胞之侷限效應.............. 94
4.2.1 Tempol/DI H2O vs. 加入30%(w/v) trehalose在逆微胞中 (AOT/isooctane w0=20) 於不同溫度之Cw-ESR光譜分析........... 95
4.2.2 Tempol/PBS vs. 加入30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=20) 於不同溫度之Cw-ESR光譜分析........... 97
4.2.3 Tempol/30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=20) 經-80℃冷凍後於不同溫度之Cw-ESR光譜分析.............. 98
4.2.4 Bax 67R1 vs. 加入30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=20) 中於不同溫度之Cw-ESR光譜分析......... 101
4.2.5 Bax 67R1 vs 加入30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=20) 經-80℃冷凍後於不同溫度之Cw-ESR光譜分析................................................. 103
4.2.6 本節討論.......................................... 105
4.3 利用spin-labeled lipid研究海藻糖在逆微胞中存在的位置..... 105
4.3.1 Tempo PC/DI H2O vs. 加入30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=20, 10, 5) 於不同溫度之Cw-ESR光譜分析(Tempo PC/AOT=0.0185mol%)..................................... 106
4.3.2 Tempo PC/DI H2O vs. 加入30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=5) 於不同溫度之Cw-ESR光譜分析 (Tempo PC/AOT=0.37 mol%)...................................... 111
4.3.3 Tempo PC/DI H2O vs. 加入30%(w/v) trehalose vs 加入60% (w/v) trehalose在逆微胞中 (AOT/isooctane w0=3)於不同溫度之Cw-ESR光譜分析 (Tempo PC/AOT=0.74 mol%)..................... 114
4.3.4 5-PC/DI H2O vs. 加入30% (w/v) trehalose在逆微胞中(AOT/isooctane w0=5) 於不同溫度之Cw-ESR光譜分析 (5-PC/AOT=0.37 mol%).................................................. 117
4.3.5 本節結論........................................... 119
第五章 結論.............................................. 121
參考文獻................................................. 124

1. Hubbell, W. L.; Altenbach, C., Investigation of Structure and Dynamics in Membrane-Proteins Using Site-Directed Spin-Labeling. Curr Opin Struc Biol 1994, 4 (4), 566-573.
2. Hubbell, W. L.; Mchaourab, H. S.; Altenbach, C.; Lietzow, M. A., Watching proteins move using site-directed spin labeling. Structure 1996, 4 (7), 779-783.
3. Hubbell, W. L.; Gross, A.; Langen, R.; Lietzow, M. A., Recent advances in site-directed spin labeling of proteins. Curr Opin Struc Biol 1998, 8 (5), 649-656.
4. Zhou, Z.; DeSensi, S. C.; Stein, R. A.; Brandon, S.; Dixit, M.; McArdle, E. J.; Warren, E. M.; Kroh, H. K.; Song, L. K.; Cobb, C. E.; Hustedt, E. J.; Beth, A. H., Solution structure of the cytoplasmic domain of erythrocyte membrane band 3 determined by site-directed spin labeling. Biochemistry 2005, 44 (46), 15115-15128.
5. Dong, J. H.; Yang, G. Y.; Mchaourab, H. S., Structural basis of energy transduction in the transport cycle of MsbA. Science 2005, 308 (5724), 1023-1028.
6. Hanson, S. M.; Francis, D. J.; Vishnivetskiy, S. A.; Kolobova, E. A.; Hubbell, W. L.; Klug, C. S.; Gurevich, V. V., Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci 2006, 103 (13), 4900-4905.
7. Crane, J. M.; Mao, C. F.; Lilly, A. A.; Smith, V. F.; Suo, Y. Y.; Hubbell, W. L.; Randall, L. L., Mapping of the docking of SecA onto the chaperone SecB by site-directed spin labeling: Insight into the mechanism of ligand transfer during protein export. J Mol Biol 2005, 353 (2), 295-307.
8. Cuello, L. G.; Cortes, D. M.; Perozo, E., Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 2004, 306 (5695), 491-495.
9. Cordero-Morales, J. F.; Cuello, L. G.; Zhao, Y. X.; Jogini, V.; Cortes, D. M.; Roux, B.; Perozo, E., Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 2006, 13 (4), 311-318.
10. Kim, J. M.; Altenbach, C.; Kono, M.; Oprian, D. D.; Hubbell, W. L.; Khorana, H. G., Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge. Proc Natl Acad Sci 2004, 101 (34), 12508-12513.
11. Xu, Y. B.; Zhang, F.; Su, Z. L.; McNew, J. A.; Shin, Y. K., Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 2005, 12 (5), 417-422.
12. Fanucci, G. E.; Lee, J. Y.; Cafiso, D. S., Membrane mimetic environments alter the conformation of the outer membrane protein BtuB. J Am Chem Soc 2003, 125 (46), 13932-13933.
13. Koteiche, H. A.; Chiu, S.; Majdoch, R. L.; Stewart, P. L.; Mchaourab, H. S., Atomic models by cryo-EM and site-directed spin labeling: Application to the N-terminal region of Hsp16.5. Structure 2005, 13 (8), 1165-1171.
14. Li, Y. L.; Han, X.; Lai, A. L.; Bushweller, J. H.; Cafiso, D. S.; Tamm, L. K., Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion. J Virol 2005, 79 (18), 12065-12076.
15. Zimmerman, S. B.; Trach, S. O., Estimation of Macromolecule Concentrations and Excluded Volume Effects for the Cytoplasm of Escherichia-Coli. J Mol Biol 1991, 222 (3), 599-620.
16. Flory, P. J., Principles of polymer chemistry. Cornell University Press: Ithaca,, 1953; p 672 p.
17. Zhou, H. X., Loops, linkages, rings, catenanes, cages, and crowders: Entropy-based strategies for stabilizing proteins. Acc Chem Res 2004, 37 (2), 123-130.
18. Eggers, D. K.; Valentine, J. S., Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 2001, 10 (2), 250-261.
19. Ping, G.; Yuan, J. M.; Vallieres, M.; Dong, H.; Sun, Z.; Wei, Y.; Li, F. Y.; Lin, S. H., Effects of confinement on protein folding and protein stability. J Chem Phys 2003, 118 (17), 8042-8048.
20. Bolis, D.; Politou, A. S.; Kelly, G.; Pastore, A.; Temussi, P. A., Protein stability in nanocages: A novel approach for influencing protein stability by molecular confinement. J Mol Biol 2004, 336 (1), 203-212.
21. Zhou, H. X.; Dill, K. A., Stabilization of proteins in confined spaces. Biochemistry 2001, 40 (38), 11289-11293.
22. Takagi, F.; Koga, N.; Takada, S., How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations. Proc Natl Acad Sci 2003, 100 (20), 11367-11372.
23. Mittal, J.; Best, R. B., Thermodynamics and kinetics of protein folding under confinement. Proc Natl Acad Sci 2008, 105 (51), 20233-20238.
24. Van Horn, W. D.; Ogilvie, M. E.; Flynn, P. F., Reverse Micelle Encapsulation as a Model for Intracellular Crowding. J Am Chem Soc 2009, 131 (23), 8030-8039.
25. Huang, Y. W.; Chiang, Y. W., Spin-label ESR with nanochannels to improve the study of backbone dynamics and structural conformations of polypeptides. Phys Chem Chem Phys 2011, 13 (39), 17521-17531.
26. Krishna, S. H.; Srinivas, N. D.; Raghavarao, K. S.; Karanth, N. G., Reverse micellar extraction for downstream processing of proteins/enzymes. Adv Biochem Eng Biotechnol 2002, 75, 119-83.
27. Eastoe, J.; Hollamby, M. J.; Hudson, L., Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interfac 2006, 128, 5-15.
28. Flynn, P. F., Multidimensional multinuclear solution NMR studies of encapsulated macromolecules. Prog Nucl Magn Reson Spectrosc 2004, 45 (1-2), 31-51.
29. Van Horn, W. D.; Simorellis, A. K.; Flynn, P. F., Low-temperature studies of encapsulated proteins. J Am Chem Soc 2005, 127 (39), 13553-13560.
30. Moilanen, D. E.; Levinger, N. E.; Spry, D. B.; Fayer, M. D., Confinement or the nature of the interface? Dynamics of nanoscopic water. J Am Chem Soc 2007, 129 (46), 14311-14318.
31. Baruah, B.; Roden, J. M.; Sedgwick, M.; Correa, N. M.; Crans, D. C.; Levinger, N. E., When is water not water? Exploring water confined in large reverse micelles using a highly charged inorganic molecular probe. J Am Chem Soc 2006, 128 (39), 12758-12765.
32. Mukherjee, S.; Chowdhury, P.; Gai, F. J., Tuning the Cooperativity of the Helix-Coil Transition by Aqueous Reverse Micelles. J Phys Chem B 2006, 110 (24), 11615-11619.
33. Simorellis, A. K.; Flynn, P. F., Fast local backbone dynamics of encapsulated ubiquitin. J Am Chem Soc 2006, 128 (30), 9580-9581.
34. DiRenzo, F.; Cambon, H.; Dutartre, R., A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mater 1997, 10 (4-6), 283-286.
35. ALOthman, Z. A., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5 (12), 2874-2902.
36. Ravindra, R.; Shuang, Z.; Gies, H.; Winter, R., Protein encapsulation in mesoporous silicate: The effects of confinement on protein stability, hydration, and volumetric properties. J Am Chem Soc 2004, 126 (39), 12224-12225.
37. Itoh, T.; Ishii, R.; Ebina, T.; Hanaoka, T.; Fukushima, Y.; Mizukami, F., Encapsulation of myoglobin with a mesoporous silicate results in new capabilities. Bioconjugate Chem 2006, 17 (1), 236-240.
38. Tsai, C. J.; Chiang, Y. W., Effects of Anisotropic Nanoconfinement on Rotational Dynamics of Biomolecules: An Electron Spin Resonance Study. J Phys Chem C 2012, 116 (37), 19798-19806.
39. Kouri, F. M.; Jensen, S. A.; Stegh, A. H., The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond. Sci World J 2012, 1-8.
40. Lalier, L.; Cartron, P. F.; Juin, P.; Nedelkina, S.; Manon, S.; Bechinger, B.; Vallette, F. M., Bax activation and mitochondrial insertion during apoptosis. Apoptosis 2007, 12 (5), 887-896.
41. Streisinger, G.; Mukai, F.; Dreyer, W. J.; Miller, B.; Horiuchi, S., Mutations affecting the lysozyme of phage T4. Cold Spring Harb Symp Quant Biol 1961, 26, 25-30.
42. Weaver, L. H.; Matthews, B. W., Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. J Mol Biol 1987, 193 (1), 189-99.
43. Chen, B. L.; Baase, W. A.; Nicholson, H.; Schellman, J. A., Folding kinetics of T4 lysozyme and nine mutants at 12 degrees C. Biochemistry 1992, 31 (5), 1464-76.
44. McIntosh, L. P.; Wand, A. J.; Lowry, D. F.; Redfield, A. G.; Dahlquist, F. W., Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry 1990, 29 (27), 6341-62.
45. Mchaourab, H. S.; Lietzow, M. A.; Hideg, K.; Hubbell, W. L., Motion of spin-labeled side chains in T4 lysozyme, correlation with protein structure and dynamics. Biochemistry 1996, 35 (24), 7692-7704.
46. Mchaourab, H. S.; Kalai, T.; Hideg, K.; Hubbell, W. L., Motion of spin-labeled side chains in T4 lysozyme: Effect of side chain structure. Biochemistry 1999, 38 (10), 2947-2955.
47. Martin, S. R.; Schilstra, M. J., Circular dichroism and its application to the study of biomolecules. Method Cell Biol 2008, 84, 263-293.
48. Tatford, O. C.; Gomme, P. T.; Bertolini, J., Analytical techniques for the evaluation of liquid protein therapeutics. Biotechnol Appl Bioc 2004, 40, 67-81.
49. Zavoisky, E., The paramagnetic absorption of a solution in parallel fields. J Phys Ussr 1944, 8 (1-6), 377-380.
50. Feher, G., Method of Polarizing Nuclei in Paramagnetic Substances. Phys Rev 1956, 103 (2), 500-501.
51. Blume, R. J., Electron Spin Relaxation Times in Sodium-Ammonia Solutions. Phys Rev 1958, 109 (6), 1867-1873.
52. Mims, W. B.; Nassau, K.; Mcgee, J. D., Spectral Diffusion in Electron Resonance Lines. Phys Rev 1961, 123 (6), 2059-2069.
53. Mims, W. B., Pulsed Endor Experiments. Proc R Soc Lon Ser A 1965, 283 (1395), 452-457.
54. Hyde, J. S.; Chen, J. C. W.; Freed, J. H., Electron-Electron Double Resonance of Free Radicals in Solution. J Chem Phys 1968, 48 (9), 4211-4226.
55. Eliav, U.; Freed, J. H., The Oscillatory Nature of Polarization Evolution in Cidep. J Phys Chem 1984, 88 (7), 1277-1280.
56. Gorcester, J.; Freed, J. H., Two-Dimensional Fourier-Transform Electron-Spin-Resonance Spectroscopy. J Chem Phys 1986, 85 (9), 5375-5377.
57. Ingram, D. J. E.; Bennett, J. E., Paramagnetic Resonance in Phthalocyanine, Haemoglobin, and Other Organic Derivatives. Discuss Faraday Soc 1955, (19), 140-146.
58. Commoner, B.; Townsend, J.; Pake, G. E., Free Radicals in Biological Materials. Nature 1954, 174 (4432), 689-691.
59. Ingram, D. J. E.; Tapley, J. G.; Jackson, R.; Bond, R. L.; Murnaghan, A. R., Paramagnetic Resonance in Carbonaceous Solids. Nature 1954, 174 (4434), 797-798.
60. Stone, T. J.; Buckman, T.; Nordio, P. L.; Mcconnel.Hm, Spin-Labeled Biomolecules. Proc Natl Acad Sci 1965, 54 (4), 1010-1017.
61. Altenbach, C.; Flitsch, S. L.; Khorana, H. G.; Hubbell, W. L., Structural Studies on Transmembrane Proteins .2. Spin Labeling of Bacteriorhodopsin Mutants at Unique Cysteines. Biochemistry 1989, 28 (19), 7806-7812.
62. Bridges, M. D.; Hideg, K.; Hubbell, W. L., Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR. Appl Magn Reson 2010, 37 (1-4), 363-390.
63. Fanucci, G. E.; Cafiso, D. S., Recent advances and applications of site-directed spin labeling. Curr Opin Struc Biol 2006, 16 (5), 644-653.
64. Fajer, P. G., Electron Spin Resonance Spectroscopy Labeling in Peptide and Protein Analysis. In Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd: Chichester, 2000.
65. Milov, A. D.; Salikohov, K. M.; Shirov, M. D., Application of Endor in Electron-Spin Echo for Paramagnetic Center Space Distribution in Solids. Fiz Tverd Tela 1981, 23 (4), 975-982.
66. Pannier, M.; Veit, S.; Godt, A.; Jeschke, G.; Spiess, H. W., Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 2000, 142 (2), 331-340.
67. Junk, M. J. N., Assessing the functional structure of molecular transporters by EPR spectroscopy. Springer: New York, 2011.
68. Borbat, P. P.; Freed, J. H., Measuring distances by pulsed dipolar ESR spectroscopy: Spin-labeled histidine kinases. In Methods in Enzymology, Elsevier Inc: 2007; Vol. 423, pp 52-116.
69. Weber, R. T., Pulsed ELDOR Option User's Manual. Bruker BioSpin Corporation: Billerica, 2006.
70. Laemmli, U. K., Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4. Nature 1970, 227 (5259), 680-685.
71. Steinhoff, H. J.; Suess, B., Molecular mechanisms of gene regulation studied by site-directed spin labeling. Methods 2003, 29 (2), 188-195.
72. Roessler, M. M.; King, M. S.; Robinson, A. J.; Armstrong, F. A.; Harmer, J.; Hirst, J., Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance. Proc Natl Acad Sci 2010, 107 (5), 1930-1935.
73. Carvalho, C. M. L.; Cabral, J. M. S., Reverse micelles as reaction media for lipases. Biochimie 2000, 82 (11), 1063-1085.
74. Peterson, R. W.; Anbalagan, K.; Tommos, C.; Wand, A. J., Forced folding and structural analysis of metastable proteins. J Am Chem Soc 2004, 126 (31), 9498-9499.
75. Malik, A.; Kundu, J.; Mukherjee, S. K.; Chowdhury, P. K., Myoglobin Unfolding in Crowding and Confinement. J Phys Chem B 2012, 116 (43), 12895-12904.
76. Borbat, P. P.; Mchaourab, H. S.; Freed, J. H., Protein structure determination using long-distance constraints from double-quantum coherence ESR: Study of T4 lysozyme. J Am Chem Soc 2002, 124 (19), 5304-5314.
77. Abel, S.; Waks, M.; Marchi, M., Molecular dynamics simulations of cytochrome c unfolding in AOT reverse micelles: The first steps. Eur Phys J E 2010, 32 (4), 399-409.
78. Chen, C. J.; Han, D. D.; Cai, C. F.; Tang, X., An overview of liposome lyophilization and its future potential. J Control Release 2010, 142 (3), 299-311.
79. Patist, A.; Zoerb, H., Preservation mechanisms of trehalose in food and biosystems. Colloid Surface B 2005, 40 (2), 107-113.
80. Branca, C.; Magazu, S.; Ruggirello, A.; Liveri, V. T., Structural investigation of the confinement of finite amounts of trehalose in water-containing sodium bis(2-ethylhexyl)sulfosuccinate reversed micelles. J Phys Chem B 2006, 110 (51), 25608-25611.


(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *