帳號:guest(3.12.36.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭姿吟
作者(外文):Kuo, Tzu-Yin
論文名稱(中文):含螯合硫配位基之{Fe(NO)2}9和{Fe(NO)2}10雙亞硝基鐵錯合物
論文名稱(外文):{Fe(NO)2}9 and {Fe(NO)2}10 Dinitrosyl Iron Complexes (DNICs) Bearing Chelating Thiolate-coordinate Ligands
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
口試委員(中文):洪嘉呈
王雲銘
口試委員(外文):Horng, Jia-Cherng
Wang, Yun-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023520
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:螯合硫配位基雙亞硝基鐵錯合物
外文關鍵詞:ThiolateDinitrosyl Iron ComplexesDNICsChelating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:101
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
我們合成出不同碳鏈長度的chelate-dithiolate-bound DNIC,從晶體結構、反應性、以及CV圖中比較,發現有著不一樣的性質。從CV圖中,[(NO)2Fe(SC2H4S)]-/2-的還原電位(E1/2 = -1.33 V)比碳鏈較長的chelate-dithiolate-bound DNIC [(κ2-S2-o-xylene)Fe(NO)2]-/2-(E1/2 = -1.65 V)還要高許多;且{Fe(NO)2}10 DNIC [K(K-18-crown-6-ether)][(κ2-S2-o-xylene)Fe(NO)2]必須在有陽離子的作用下,才能穩定的存在;但[PPN]2[(NO)2Fe(SC2H4S)]本身就能夠穩定;而從反應性來觀察,[PPN]2[(NO)2Fe(SC2H4S)]在氧化過程中,並非與其他碳鏈較長的DNIC一樣能夠得到穩定的{Fe(NO)2}9 DNIC,反而是硫原子先被氧化形成{Fe(NO)2}10-{Fe(NO)}7產物:[PPN]2[(NO)2Fe(μ-κ2-SC2H4S)2Fe(NO)]。由以上的實驗結果,我們推測chelate-dithiolate-bound DNIC的配位基碳鏈長度與bite angle改變,對於DNIC的電子結構、穩定度和反應性皆有著重大的影響。

Several chelate-dithiolate-bound DNICs with different backbone length were synthesized. According to single-crystal X-ray structures, reactivity, and cyclic voltammograms, these chelate-dithiolate-bound DNICs show different properties. From the electrochemistry, the {Fe(NO)2}10 DNIC [PPN]2[(NO)2Fe(SC2H4S)] bearing a shorter backbone displays a rather positive midpoint potential compared to [PPN]2[(κ2-S2-o-xylene)Fe(NO)2 bearing a longer backbone. The interaction of [K⋯S] is an important factor to stabilize the {Fe(NO)2}10 DNIC [K(K-18-crown-6-ether)][(κ2-S2-o-xylene)Fe(NO)2]. However, [(NO)2Fe(SC2H4S)]2- was stable with [PPN]+ salt. The oxidation of [PPN]2[(NO)2Fe(SC2H4S)] might occur on S atom, and form a {Fe(NO)2}10-{Fe(NO)}7 product [PPN]2[(NO)2Fe(μ-κ-SC2H4S)2Fe(NO)]. These results infer that the backbone length and bite angle of chelate-dithiolate-bound DNIC could not only modulate the electronic structure of {Fe(NO)2} core, but also influence its stability and reactivity.
第一章 緒論 1
1-1 一氧化氮的歷史與分子特性 1
1-2 人體中一氧化氮的生成 4
1-3 一氧化氮在體內的儲存、運送與作用 7
1-4 雙亞硝基鐵錯合物 10
1-5 研究方向 17
第二章 實驗部份 18
2-1 一般實驗 18
2-2 儀器 18
2-3 藥品 20
2-4 化合物的合成與反應 21
2-4-1 2-4-1 1,2-Benzenedimethanethiol 的合成 21
2-4-2 [Cation][(κ2-S2-o-xylene)Fe(NO)2] (1) 的合成 22
2-4-3 Complex 1-PPN與NO(g) 反應 23
2-4-4 [K(K-18-crown-6-ether)][(κ2-S2-o-xylene)Fe(NO)2] (2) 的合成 23
2-4-5 Complex 2 與 (TMEDA)Fe(NO)2 反應 24
2-4-6 [PPN]2[(2-SC2H4S)Fe(NO)2] 的合成 25
2-4-7 [PPN]2[(2-SC2H4S)Fe(NO)2] 與 [Cp2Fe][BF4] 反應 26
2-5 晶體結構解析(Crystallgraphy) 26
第三章 結果與討論 32
3-1螯合配位基{Fe(NO)2}9DNIC-[PPN][(κ2-S2-o-xylene)Fe(NO)2] (1)之結構與性質 32
3-2 [PPN][(κ2-S2-o-xylene)Fe(NO)2]與NO(g)反應之結果探討 39
3-3螯合配位基{Fe(NO)2}10 DNIC [K(K-18-crown-6-ether)][(κ2-S2-o-xylene)Fe(NO)2] (2)之結構與性質 45
3-4螯合配位基{Fe(NO)2}10 DNIC-[cation]2[(κ2-SC2H4S)Fe(NO)2] 之氧化反應與結果討論 55
第四章 結論 67
References 70


Figure
Fig. 1-1一氧化氮分子軌域圖 2
Fig. 1-2金屬與NO之間的鍵結關係 3
Fig. 1-3 NOS將L-arginine氧化產生NO的過程 5
Fig. 1-4 NOS在體內作用機制 7
Fig. 1-5 (a) Cys-NO、GSNO的結構. (b) RSNO的生成與機制 8
Fig. 1-6利用MRP-1傳遞GS-DNIC以及NO調節機制 10
Fig. 1-7 GST P1-1 protein-bond DNIC 合成過程與晶體結構 11
Fig. 1-8 Classical LMW DNIC 分類與結構 13
Fig. 1-9 Non-classical 多配位DNIC結構 14
Fig. 1-10 RRE、RRS、reduced RRE 結構與EPR訊號 15
Fig. 1-11常見的鐵硫亞硝基錯合物 16
Fig. 1-12{Fe(NO)2}9 DNIC轉換成[2Fe-2S] clusters 之反應機制 16
Fig. 3-1 Structure of complex 1 with thermal ellipsoids at 50% probability 34
Fig. 3-2 [PPN][(κ2-S2-o-xylene)Fe(NO)2] (1)之IR光譜(KBr) 36
Fig. 3-3 complex 1之UV-vis吸收光譜(CH3CN) 36
Fig. 3-4 complex 1之EPR光譜 (a) at 298K (g = 2.030), (b) at 77K (g1 = 2.046, g2 = 2.029, g3 = 2.013) 37
Fig. 3-5 complex 1之CV圖 38
Fig. 3-6 [PPN][(NO)2Fe(SC3H6S)]與NO(g)反應 39
Fig. 3-7 Complex 1 + NO(g)與(NO2)2Fe(NO)2之液態IR光譜in THF 41
Fig. 3-8 Complex 1與NO(g) 反應之液態IR光譜 in THF 42
Fig. 3-9 Complex 1與NO(g) 反應之固態IR光譜 42
Fig. 3-10 Fe(NO)4與(NO2)2Fe(NO)2之固態IR光譜比較 43
Fig. 3-11反應副產物cyclic disulfide之1H NMR (δ7.18 (m,2H); 7.08 (m,2H); 4.07 (s,4H) ppm (CDCl3)) 44
Fig. 3-12 Structure of complex 2 with thermal ellipsoids at 50% probability 46
Fig. 3-13 Complex 1與Complex 2 之固態IR光譜 48
Fig. 3-14 Complex 2 之UV-vis吸收光譜(CH3CN) 49
Fig. 3-15 Complex 1與Complex 2之Fe-edge比較 52
Fig. 3-16 Structure of complex 3 with thermal ellipsoids at 50% probability 53
Fig. 3-17 [PPN]2[(NO)2Fe(SC2H4S)]氧化反應追蹤之IR光譜圖(CH3CN) 56
Fig. 3-18 Structure of complex 4 with thermal ellipsoids at 50% probability 57
Fig. 3-19利用低溫UV-vis光譜儀偵測[PPN]2[(NO)2Fe(SC2H4S)]氧化反應 58
Fig. 3-20 Complex 4之固態IR光譜圖(KBr) 60
Fig. 3-21 [PPN]2[(NO)2Fe(SC2H4S)]加入0.5 eq[Cp2Fe][BF4]之氧化反應 EPR光譜 61

Table
Table 1-1 NO之性質整理 2
Table 1-2不同類型NOS之性質與功能 6
Table 1-3 Protein bond DNIC之配位環境與EPR訊號 12
Table 2-1 Crystal data and structure refinement for Complex 1-PPN 27
Table 2-2 Crystal data and structure refinement for Complex 1-Crown 28
Table 2-3 Crystal data and structure refinement for Complex 2 29
Table 2-4 Crystal data and structure refinement for Complex 3 30
Table 2-5 Crystal data and structure refinement for Complex 4 31
Table 3-1 bidentate與monodentate含硫配位基{Fe(NO)2}9 DNIC之鍵長鍵 角比較 35
Table 3-2 Thiolate-bound DNIC之還原電位比較. 39
Table 3-3 bidentate thiolate-bound {Fe(NO)2}9與{Fe(NO)2}10 DNIC之性質比較 50
Table 3-4 complex 4與[PPN][(NO)Fe(S,S-C6H4)2Fe(NO)2]之鍵長鍵角 65

Scheme
Scheme 3-1 complex 1 的合成 33
Scheme 3-2 complex 1 與NO(g)反應 40
Scheme 3-3 complex 2 的合成. 45
Scheme 3-4 complex 2陽離子置換 48
Scheme 3-5 complex 2 與 TMEDA-DNIC反應 53
Scheme 3-6形成complex 3 之推測反應機構 54
Scheme 3-7 [PPN]2[(NO)2Fe(SC2H4S)]之氧化反應 59
Scheme 3-8 [PPN]2[(NO)2Fe(SC2H4S)]氧化反應之推測反應機構. 62
Scheme 3-9不同bidentate thiolate DNIC之互相轉換與反應性 66
1. Furchgott, R.F.; Zawadzki, J.V. Nature 1980, 288, 373.
2. (a) Ignarro, L. J.; Adams, J. B.; Horwitz, P. M.; Wood, K. S. J. Bioinorg. Chem. 1986, 261, 4997. (b) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. 1987, 84, 9265.
3. (a) Stamler, J. S. Cell 1994, 78, 931. (b) Stamler J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898. (c) Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, Y. Biochem. Pharmacol. 2002, 63, 485. (d) Lee, J.; Chen, L; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019. (e) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091.
4. Koshland, D. E. Science 1992, 258, 1861.
5. Gary, L. M.; Donald, A. T.: Prentice Hall International, Inc. Inorganic Chemistry 2nd , 44.
6. Enemark, J. H.; Feltham, T. D. Coord. Chem. Rev. 1974, 13, 339.
7. Marletta, M. A. Cell 1994, 78, 927.
8. (a) Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T. Nat. Rev. 2008, 7, 156. (b) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nat. Rev. 2004, 2, 593.
9. (a)Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Biochem. J. 2001, 357, 593. (b)Nussler, A. K.; Billiar, T. R. J. Leukoc. Biol. 1993, 54, 171. (c) Wlodek, D.; Gonzales, M. J. Theor. Biol. 2003, 225, 33
10. Bogdan, C. Trends Cell Biol. 2001, 11, 66.
11. Jose Carlos Toledo Jr., Ohara Augusto, Chem. Res. Toxicol. 2012, 25, 975.
12. (a)Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155 (b) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485. (c) Frederik., A. C.; Wiegant, I. Y.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett. 1999, 455, 179. (d) McCleverty, J. A. Chem. Rev. 2004, 104, 403. (e) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935.
13. (a) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. J. Biol. Chem. 1995, 270, 2815. (b) Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1996, 118, 3419. (c) Junhui S.; Charles S.; and Elizabeth M. Antioxid Redox Signal. 2006, 8, 1693.
14. (a) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. J. Biol. Chem. 1995, 270, 2815. (b) Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1996, 118, 3419.
15. (a) Szacilowski, K.; Chmura, A.; Stasicka, Z. Coord. Chem. Rev. 2005, 249, 2408. (b) Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Mülsch, A. J. Biol. Chem. 1997, 272, 21767. (c) Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, M. D. Biochemistry 1994, 33, 3679.
16. (a) Link, T. A. Adv. Inorg. Chem, 1999, 47, 83. (b) Hunsicker-Wang, L. M.; Heine, A.; Chen, Y.; Luna, E. P.; Todaro, T.; Zhang, Y. M.; Williams, P. A.; McRee, D. E.; Hirst, J.; Stout, C. D.; Fee, J. A. Biochemistry, 2003, 42, 7303.
17. (a) Calzolai, L.;Zhou, Z. H.; Adams, M. W. W.; La Mar G. N. J. Am. Chem. Soc. 1996, 118, 2513. (b) Kennedy, M. C.; Antholine, W. E.; Beinert, H. J. Biol. Chem. 1997, 727, 20340. (c) Meyer, J. Arch. Biochem. Biophys. 1981, 210, 246. (d) Welter, R.; Yu, L.; Yu, C. A. Arch. Biochem. Biophys. 1996, 331, 9. (e) Rogers, P. A.; Eide, L.; Klungland, A.; Ding, H. DNA Repair 2003, 2, 809. (f) Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699. (g) Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5146. (h) Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868. (i) Bouton, C.; Chauveau, M. J.; Lazereg, S.; Drapier, J. C. J. Biol. Chem. 2002, 277, 31220.
18. (a) Vanin, A. F.; Stukan, R. A.; Manukhina, E. B. Biophys. Acta 1996, 1295, 5. (b) Severina, I. S.; Bussygina, O. G.; Pyatakova, N.V.; Malenkova, I. V.; Vanin, A. F. Nitric Oxide 2003, 8, 155
19. (a) Malyshev, I. Y.; Manukhina, E. B.; Mikoyan, V. D.; Kubrina, L. N.; Vanin, A. F. FEBS Lett. 1995, 370, 159. (b) Kleschyov, I. Y.; Malugin, A. V.; Golubeva, L. Y.; Zenina, T. A.; Manukhina, E. B.; Mikoyan, V. D.; Vanin, A. F. FEBS Lett. 1996, 391, 21.
20. Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, S. R. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 7670
21. (a) Harrop, T. C.; Song, D.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 3528. (b) Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15602.
22. Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172.
23. (a) Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K. EMBO J. 2002, 21, 3235. (b) Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, M. D. Biochemistry 1994, 33, 3679. (c) D’Autréaux, B.; Horner, O.; Oddou, J.-L.; Jeandey, C.; Gambarelli, S.; Berthomieu, C.; Latour, J.-M.; Michaud-Soret, I. J. Am. Chem. Soc. 2004, 126, 6005. (d) Goussias, C.; Deligiannakis, Y.; Sanakis, Y.; Ioannidis, N.; Petrouleas, V. Biochemistry 2002, 41, 15212.
24. Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095.
25. (a) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (b) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357. (c) Bryar, T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917. (d) Osterloh, F.; Saak, W.; Haase, D.; Pohl, S. Chem. Commun. 1997, 979. (e) Liaw, W.-F.; Chiang, C.-Y.; Lee, G..-H.; Peng, S.-M.; Lai, C.-H. Inorg. Chem. 2000, 39, 480. (f) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (g) Chiang, C. Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867. (h) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (i) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (j) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799. (k) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110. (l) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196. (m) Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I.-J.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9579. (l) Tsai, F.-T.; Chen, P.-L. ; Liaw, W.-F. J. Am. Chem. Soc. 2010, 132, 5290.
26. (a) Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095. (b) Hess, J. L.; Hsieh, C.-H.; Reibenspies, J. H.; Darensbourg, M. Y. Inorg. Chem. 2011, 50, 8541. (c) Tsai, F.-T.; Kuo, T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426. (d) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583.
27. Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
28. (a) Albano, V. G.; Areneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (b) Chau, C. N.; Wojcicki, A.; Calligaris, M.; Nardin, G. Inorg. Chim. Acta. 1990, 168, 105. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217. (d) Yeh, S.-W.; Lin, C.-W.; Li, Y.-W.; Hsu, I-J.; Chen ,C.-H. ; Jang, L.-Y.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2012, 51, 4076
29. Shih, W.-C.; Lu, T.-T.; Yang, L,-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang, Y.-W.; Liaw, W.-F. J. Inorg. Biochem. 2012, 113, 83.
30. (a) Russin, J. Ann. Chim. Phys. 1858, 52, 285. (b) Lu, T.-T.; Huang, H.-W.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9027.
31. Tonzetich, Z. J.; McQuade L. E.; Lippard, S. J. Inorg. Chem. 2010, 49, 6388.
32. Tsou, T.-T.; Lin, Z.-S.; Lu, T.-T.; Liaw, W.-F. J. Am Chem. Soc. 2008, 130, 17154.
33. J. J., Mayerle; S. E. Denmark; B. V. DePamphilis; James A. Ibers; R. H. Holm. J. Am. Chem. Soc. 1975.97.1032
34. 林志威,2012,,單牙與雙牙之烷基硫配位{Fe(NO)2}10雙亞硝基鐵錯合物的合成與性質研究,碩士論文,新竹:國立清華大學化學所。
35. Lin, Z.-S.; Chiou, T.-W.; Liu, K.-Y.; Hsieh, C.-C.; Yu, J.-S.; Liaw, W.-F. Inorg. Chem. 2012, 51, 10092.
36. (a) Lee, C.-M.; Chen, C.-H.; Chen, H.-W.; Hsu, J.-L.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 6670. (b) Chen, H.-W.; Lin, C.-W.; Chen, C.-C.; Yang, L.-B.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 3226. (c) Lu, T.-T.; Yang, L.-B.; Liaw, W.-F. J. Chin. Chem. Soc. 2010, 57, 909.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *