帳號:guest(3.145.65.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝正偉
作者(外文):Hsieh, Cheng-Wei
論文名稱(中文):Lysosome-responsive Transcription Factor EB Activation upon Mitophagy Degradation Stress
論文名稱(外文):粒線體自噬壓力下溶酶體對轉錄因子 TFEB 的活化調控
指導教授(中文):楊維元
陳貴通
指導教授(外文):Yang, Wei Yuan
Tan, Kui-Thong
口試委員(中文):陳瑞華
陳光超
姚季光
口試委員(外文):Chen, Ruey-Hwa
Chen, Guang-Chao
Yao, Chi-Kuang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023457
出版年(民國):105
畢業學年度:104
論文頁數:132
中文關鍵詞:粒線體自噬
外文關鍵詞:mitophagy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:275
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
除了將溶酶體視為降解過程的最後胞器,溶酶體逐漸被認為參與控制細胞功能的上游路徑。因此,溶酶體的動態穩定應該被嚴格的調控,已配合代謝的需求以及維護溶酶體參與的細胞功能調控。這裡我們使用光調控產生粒線體自噬需求,以降解基質影響溶酶體的動態穩定,並定量觀察在不同程度的降解壓力下,溶酶體如何調控其生合成與動態平衡。我們觀察到,在粒線體自噬降解需求下,TFEB轉錄因子調控的溶酶體相關基因有正向活化趨勢,並且基因活化幅度與降解需求有正相關性。細胞藉由調控mTOR的活性抑制,得以產生這種壓力與反應的定量協調。進一步的研究證實粒線體自噬造成的mTOR活性抑制是透過在autolysosome胞器上聚集mTOR活性調節分子,DEPDC5和FLCN。Autolysosome 是一種溶酶體與自噬體融合後的混和胞器。此外,藉由STX17基因靜默進而阻斷自噬體與溶酶體的融合,足以使TFEB基因活化反應與壓力脫鉤。這些結果顯示兩種胞器中,溶酶體和autolysosome在mTOR活性調控和TFEB基因活化的功能上有不同之處。溶酶體透過與自噬體的融合,得以定量上感測降解壓力的幅度並且微調TFEB基因活化以維護自我調節的動態平衡。
Except of the simplified view of lysosomes as the final compartments of degradation process, lysosomes are increasingly regarded as upstream organelles in the control of cell functions. Therefore, lysosome homeostasis should be tightly regulated to match the catabolic needs as well as to maintain lysosomal pathways. Here we use light-induced mitophagy substrates to disturb lysosome homeostatsis and reveal how lysosome biogenesis responses quantitatively to different levels of degradation stress. We observed that TFEB-mediated lysosomal genes activation is upregulated in dose-dependent manner upon variants mitophagy degradation stresses. This stress-response coordination is quantitatively modulated by mTOR inactivation. We further show that mitophagy-dependent mTOR inactivation is mediated by spatially recruiting mTOR activity regulators, DEPDC5 and FLCN, on autolysosome, a hybrid organelle of autophagosome and lysosome. Also, blocking autophagosome-lysosome fusion, by knocking down STX17, makes TFEB activation response decoupling from stress. These results suggest lysosome and autolysosome are functionally different in respect of mTOR activity and TFEB activation. Through fusing with autophagosomes, lysosomes sense degradation stress and decode into fine-tuning TFEB activation in the maintenance of self-regulated homeostasis.
1 Review of TFEB 9
1.1 TFEB related gene activation 9
1.2 TFEB neurodegenerative disease and development 11
1.3 TFEB regulation mechanism links to mTOR and lysosome 14
1.4 TFEB activated by different stresses which affect mTOR or lysosome 17
1.5 TFEB upregulated by itself and other transcription factor 19
2 Introduction 21
3 Results 23
3.1 TFEB-regulated genes activation coupling with degradation stress 23
3.2 Dephosphorylation on mTOR-responsive residue S211 is required for TFEB translocation under mitophagy degradation stress 26
3.3 GAP of Rag GTPase involving in mitophagy-mediated mTOR inhibition 28
3.4 Blocking autophagosome lysosome fusion inhibits mitophagy-dependent TFEB activation 31
4 Discussion 33
4.1 Photoinduced mitophagy 34
4.2 mTOR activity and mTOR substrate specificity 36
4.3 Rag GTPase regulated mTOR activity 39
4.4 Fusion dependent and hybrid organelle autophagolysosome 40
4.5 Lysosome homeostasis and stress response 42
5 Materials and Methods 45
Reference 125
1. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325(5939): 473-477.

2. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Human molecular genetics 2011, 20(19): 3852-3866.

3. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332(6036): 1429-1433.

4. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Science signaling 2012, 5(228): ra42.

5. Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8(6): 903-914.

6. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proceedings of the National Academy of Sciences of the United States of America 2013, 110(19): E1817-1826.

7. Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Science signaling 2014, 7(309): ra9.

8. Wang W, Gao Q, Yang M, Zhang X, Yu L, Lawas M, et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America 2015, 112(11): E1373-1381.

9. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Developmental cell 2011, 21(3): 421-430.

10. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, et al. Lysosomal positioning coordinates cellular nutrient responses. Nature cell biology 2011, 13(4): 453-460.

11. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011, 332(6032): 966-970.

12. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature communications 2013, 4: 2267.

13. Tognon E, Kobia F, Busi I, Fumagalli A, De Masi F, Vaccari T. Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster. Autophagy 2016, 12(3): 499-514.

14. Dar AA, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proceedings of the National Academy of Sciences of the United States of America 2016.

15. Huan C, Sashital D, Hailemariam T, Kelly ML, Roman CA. Renal carcinoma-associated transcription factors TFE3 and TFEB are leukemia inhibitory factor-responsive transcription activators of E-cadherin. The Journal of biological chemistry 2005, 280(34): 30225-30235.

16. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015, 524(7565): 361-365.

17. Martina JA, Puertollano R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. The Journal of cell biology 2013, 200(4): 475-491.

18. Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. The Journal of cell biology 2013, 202(7): 1107-1122.

19. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal 2012, 31(5): 1095-1108.

20. Dutchak PA, Laxman S, Estill SJ, Wang C, Wang Y, Wang Y, et al. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell reports 2015, 12(3): 371-379.

21. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature cell biology 2015, 17(3): 288-299.

22. Reddy K, Cusack CL, Nnah IC, Khayati K, Saqcena C, Huynh TB, et al. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency. Cell reports 2016, 14(9): 2166-2179.

23. Hoglinger D, Haberkant P, Aguilera-Romero A, Riezman H, Porter FD, Platt FM, et al. Intracellular sphingosine releases calcium from lysosomes. eLife 2015, 4.

24. Santaguida S, Vasile E, White E, Amon A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes & development 2015, 29(19): 2010-2021.

25. Martina JA, Diab HI, Brady OA, Puertollano R. TFEB and TFE3 are novel components of the integrated stress response. The EMBO journal 2016, 35(5): 479-495.

26. Nezich CL, Wang C, Fogel AI, Youle RJ. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. The Journal of cell biology 2015, 210(3): 435-450.

27. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature cell biology 2013, 15(6): 647-658.

28. Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Molecular cell 2013, 50(1): 16-28.

29. Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. The Journal of cell biology 2012, 199(5): 723-734.

30. Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. The Journal of biological chemistry 2010, 285(27): 20423-20427.

31. Appelqvist H, Waster P, Kagedal K, Ollinger K. The lysosome: from waste bag to potential therapeutic target. Journal of molecular cell biology 2013, 5(4): 214-226.

32. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441(7095): 880-884.

33. Li M, Khambu B, Zhang H, Kang JH, Chen X, Chen D, et al. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. The Journal of biological chemistry 2013, 288(50): 35769-35780.

34. Hsieh CW, Chu CH, Lee HM, Yuan Yang W. Triggering mitophagy with far-red fluorescent photosensitizers. Scientific reports 2015, 5: 10376.

35. Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Molecular cell 2014, 56(3): 360-375.

36. Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013, 340(6139): 1451-1455.

37. Wauer T, Komander D. Structure of the human Parkin ligase domain in an autoinhibited state. The EMBO journal 2013, 32(15): 2099-2112.

38. Lin YF, Haynes CM. Metabolism and the UPR(mt). Molecular cell 2016, 61(5): 677-682.

39. Zopf CJ, Quinn K, Zeidman J, Maheshri N. Cell-cycle dependence of transcription dominates noise in gene expression. PLoS computational biology 2013, 9(7): e1003161.

40. Battich N, Stoeger T, Pelkmans L. Control of Transcript Variability in Single Mammalian Cells. Cell 2015, 163(7): 1596-1610.

41. Shen HM, Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends in biochemical sciences 2014, 39(2): 61-71.

42. Ferron M, Settembre C, Shimazu J, Lacombe J, Kato S, Rawlings DJ, et al. A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes & development 2013, 27(8): 955-969.

43. Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156(4): 786-799.

44. Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156(4): 771-785.

45. Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature cell biology 2013, 15(10): 1186-1196.

46. Demetriades C, Plescher M, Teleman AA. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nature communications 2016, 7: 10662.

47. Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Molecular cell 2013, 52(4): 495-505.

48. Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Scientific reports 2015, 5: 9502.

49. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell reports 2014, 9(4): 1281-1291.

50. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340(6136): 1100-1106.

51. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3(5): 452-460.

52. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151(6): 1256-1269.

53. Kawai A, Uchiyama H, Takano S, Nakamura N, Ohkuma S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 2007, 3(2): 154-157.

54. Toyama EQ, Herzig S, Courchet J, Lewis TL, Jr., Loson OC, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 2016, 351(6270): 275-281.

55. Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Molecular cell 2013, 49(1): 172-185.

56. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology 2011, 13(2): 132-141.

57. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115(5): 577-590.

58. Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013, 9(12): 1983-1995.

59. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332(6035): 1317-1322.

60. Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS, et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Molecular cell 2015, 57(2): 207-218.

61. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nature reviews Molecular cell biology 2014, 15(3): 155-162.

62. Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013, 341(6144): 1236566.

63. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, et al. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell 2016, 165(1): 153-164.

64. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008, 4(7): 849-850.

65. Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Molecular biology of the cell 2014, 25(8): 1327-1337.

66. Flinn RJ, Backer JM. mTORC1 signals from late endosomes: taking a TOR of the endocytic system. Cell cycle 2010, 9(10): 1869-1870.

67. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465(7300): 942-946.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *