帳號:guest(3.142.166.206)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃易辰
作者(外文):Huang, Yi-Chen
論文名稱(中文):W頻段磁旋返波振盪器效率之研究
論文名稱(外文):Study of Efficiency Enhancement of the W-Band Gyro-Backward Wave Oscillator
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):朱國瑞
洪健倫
陳仕宏
葉義生
口試委員(外文):Chu, Kwo-Ray
Hung, Chien-Lun
Chen, Shih-Hung
Yeh, Yi-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:100022536
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:56
中文關鍵詞:迴旋管磁旋返波振盪器電子迴旋脈射
外文關鍵詞:gyrotrongyro-BWOECM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:585
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
磁旋返波振盪器係利用電子迴旋脈射機制產生同調電磁波,利用電子與波的內部反饋迴路產生振盪,而非採用傳統共振腔結構,因而有連續可調的寬頻調頻之特性,在研究與實用上都有很大的發展潛力。然而,因為其場型會往作用結構的前端集中,不利於電子與波的交互作用,所以其效率通常相當低,因此探討磁旋返波振盪器的基本特性與效率之提升是本篇論文的主要脈絡。
做為與以往Ka頻段的磁旋返波振盪器模擬結果之比較及驗證,本文根據已設計好的W頻段MIG電子槍之工作參數為依據,以W頻段的磁旋返波振盪器為研究對象,做理論上的計算探討。
在小訊號的線性操作之下,根據電子與電磁波的交互作用形式,能量吸放的次數之不同,造成不同的軸向模式;而在飽和電流的非線性操作下,因為內部反饋迴路的縮短,造成場型逐漸往上游端收縮,因而形成效率對電流或長度的飽和現象。
接著,我們根據以往經驗提出的方法,適當地傾斜磁旋返波振盪器之作用結構的半徑,以提升效率。模擬結果顯示,我們的雙傾斜結構設計在振盪頻率94GHz至99GHz可給出約23%至30%的效率,達到穩定而寬頻的高功率輸出。
The gyro-BWO(gyrotron backward wave oscillator) is a promising source of coherent millimeter-wave based on the ECM(Electron Cyclotron Maser) interaction. The facts that oscillation is formed by an internal feedback loop enables a gyro-BWO to use a non-resonant structure, hence the frequency of a gyro-BWO can be tuned broadly and continuously. However, the facts that the field profile tends to concentrate in front of the interaction structure when a gyro-BWO is working, strongly affects the interaction between electrons and wave, and this usually ruins the efficiency of a gyro-BWO. Hence the main idea of this study is to realize the basic characteristic and enhance the efficiency of a gyro-BWO.
W-band gyro-BWO is the main target of this study, and all the working parameters of this study is based on our W-band MIG gun, which has been designed and fabricated by Dr. C.P. Yuan, and the result is compared with our previous study on Ka-band gyro-BWO.
In small-signal operation, the behavior of the gyro-BWO is linear. The number of axial modes is strongly related to the times of energy deposition between electrons and wave. On the other hand, in nonlinear operation, the efficiency saturates with growing current or interaction length, which is result from the contraction of the internal feedback loop and hence contracts the field profiles.
Last of all, according to previous paper, we do some optimize to enhance the efficiency of W-band gyro-BWO by tapering our interaction structure quiet smoothly. The result shows that our by-tapering structure gives about 23%~30% in efficiency from 94GHz to 99GHz in oscillation frequency.
摘要 i
Abstract ii
致謝 iii
目錄 iv
第一章 緒論 1
1.1兆赫茲微波簡介 1
1.2微波產生方式簡介 2
1.3磁旋管簡介 5
1.4電子迴旋脈射之原理 7
1.5論文概述 10
第二章 非線性理論計算公式 11
2.1電磁波的場方程式 12
2.2電子動力學 17
2.3電子初始分佈 20
2.4邊界條件 22
2.5轉換至慢速座標 24
第三章 磁旋返波振盪器之介紹與特性 28
3.1磁旋返波振盪器的基本原理與發展 28
3.2磁旋返波振盪器的線性行為 31
3.3磁旋返波振盪器的飽和行為 35
第四章 磁旋返波振盪器之效率分析與優化 41
4.1傾斜波導管結構對效率之影響 42
4.2雙段傾斜結構 50
第五章 結論 53
參考文獻 55
[1] V. L. Granatstein, R. K. Parker, and C. M. Armstrong, Vacuum electronics at the dawn of the twenty-first century, Proc. IEEE 87, 702 (1999).
[2] R. J. Barker and E. Schamiloglu, Eds., High-Power Microwave Sources and Technologies (IEEE Press, New York, 2001).
[3] A. V. Gaponov-Grekhov and V. L. Granatstein, Eds., Applications of High Power Microwaves (Artech House, Norwood, MA, 1994).
[4] K. R. Chu, Rev. Mod. Phys. The electron cyclotron maser, 76, 489 (2004).
[5] K. R. Chu, Nonlinear formulation for gyro-TWT and CARM amplifier
[6] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett. 70, 924, 1993
[7] G. S. Nusinovich, and O. Dumbrajs, IEEE Trans. Plasma Sci. 24, 620, 1996.
[8] C. S. Kou, Phys. Plasmas, 1, 3093,1994.
[9] J. M. Wachtel and E. J. Wachtel, Appl. Phys. Lett. 37, 1059, 1980.
[10] S. Y. Park, V. L. Granatstein, and R. K. Parker, Int. J. Electronics, 57, 1109, 1984.
[11] G. S. Nusinovich, and O. Dumbrajs, IEEE Trans. Plasma Sci. 24, 620, 1996.
[12] A. K. Ganguly and S. Ahn, Int. J. Electronics, 67, 261, 1989.
[13] A. K. Ganguly and S. Ahn, Appl. Phys. Lett, 54, 514, 1989.
[14] C. S. Kou, C. H. Chen, and T. J. Wu, Phys. Rev. E. 57, 7162, 1998.
[15] A. T. Lin, Phys. Rev. A. 46, 4516, 1992.
[16] A. T. Lin and C. C. Lin, Phys. Fluids B. 5, 2314, 1993.
[17] M. J. Arman, IEEE Trans. Plasma Sci. 26, 693, 1998.
[18] S. Y. Parker, R. H. Kyser, C. M. Armstrong, R. K. Parker and V. L. Granatstein, IEEE Trans. Plasma Sci. 18, 321, 1990.
[19] M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I. Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, IEEE Trans. Plasma Sci. 24, 636, 1996.
[20] S. H. Chen, K. R. Chu, and T. H. Chang, Phys. Rev. Lett. 85, 2633, 2000.
[21] T. H. Chang, S. H. Chen, L. R. Barnett and K. R. Chu, Phys. Rev. Lett. 87, 064802, 2001.

[22] S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan and K. R. Chu, Phys. Rev. Lett. 89, 268303, 2002.
[23] G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., Phys. Rev. Lett. 87, 218301, 2001.
[24] A. Grudiev and K. Schunemann, IEEE Trans. Plasma Sci. 30, 851, 2002.
[25] N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881, 1986.
[26] A. T. Lin, Z. H. Yang, and K. R. Chu, IEEE Trans. Plasma Sci. 16, 129, 1988.
[27] C. P. Yuan, T. H. Chang, N. C. Chen, and Y. S. Yeh, Magnetron injection gun for a broadband gyrotron backward-wave oscillator, Phys. Plasmas 16, 073109, 2009
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *