帳號:guest(3.141.198.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):袁志瑋
作者(外文):Yuan, Chih-Wei
論文名稱(中文):鉍鐵氧薄膜之X光吸收能譜學與光電子激發能譜學研究
論文名稱(外文):X-ray Absorption Spectroscopy and Photoemission Spectroscopy Studies of BiFeO3 Thin Films
指導教授(中文):黃迪靖
朱英豪
指導教授(外文):Huang, Di-Jing
Chu, Ying-Hao
口試委員(中文):黃迪靖
朱英豪
蘇雲良
口試委員(外文):Huang, Di-Jing
Chu, Ying-Hao
Soo, Yun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:100022532
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:多鐵物理鉍鐵氧X光吸收能譜學光電子激發能譜學
外文關鍵詞:Multiferroic MaterialBiFeO3X-ray Absorption SpectroscopyPhotoemission Spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:563
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
過渡金屬氧化物於近年來被許多科學團隊廣泛地研究成為新一代電子元件的重要材料,其內部擁有相當有趣的物理特性,主要是來自於電子本身的基本屬性。而鉍鐵氧(BiFeO3)是少數在室溫下即擁有鐵電-反鐵磁耦合的多鐵材料,並具備電控磁的磁電耦合效應,然而此材料所擁有磁與電的特性在現今資訊與電子科技發達的年代扮演著重要角色,如非揮發性記憶體、自旋電子元件及記錄媒體等。因此本實驗主要使用脈衝雷射沉積法(PLD)沉積優良取向性的BiFeO3薄膜。利用軟X光吸收光譜技術(XAS)來量測BiFeO3薄膜之鐵L-edge的線性二向性(LD)、線性磁二向性(MLD)實驗,由光譜圖能了解BFO薄膜的電子結構、軌域與反鐵磁等特性。同時搭配磁圓偏振二向性(MCD)光譜與超導量子干涉儀(SQUID)來探討樣品的磁特性來源。此外,本實驗採用高能量解析力的硬X光光電子能譜技術(HXPES)能直接探討BFO薄膜深層的佔有態電子結構,實驗結果表示BFO薄膜的光電子激發光譜圖於Fe-2p3/2峰值有雙重峰值的產生,我們解釋是因為薄膜內部存在的三價態(Fe3+)鐵離子之多重態結構是由多重峰值所組成的,進而使得Fe-2p3/2峰值有分裂的現象,其峰值分裂的能量大小為1.15 eV。另外,我們將製備完畢的BFO薄膜在降溫時去改變不同的氧氣壓力,100 Torr、9*10-2 Torr下製備的BFO薄膜在光電子激發光譜圖看不出其電子結構變化。最後,將BFO薄膜沉積於薄膜具有拉伸、壓縮應力的各種基板上,當各種基板的晶格常數與BFO薄膜本身晶格常數之間的匹配性越差時,光電子激發光譜圖於Fe-2p3/2峰值的雙重峰值的光電子激發強度、峰值間的能量差距均有差異,本部分實驗結果只能看到實驗現象,尚未解釋其物理原因為何,尚需搭配進一步的理論計算或實驗來幫助了解。
Magnetoelectric coupling in multiferroic materials has attracted much attention because the exciting application potential in multiply controlled devices. Among the few room-temperature single-phase magnetoelectric multiferroics reported, BiFeO3 shows the strong coupling between antiferromagnetic and ferroelectric types of order. Hence these multiferroic matericals are of interest for memory and logic device applications. First, the (001)-oriented BiFeO3 thin film is synthesized by the pulsed laser deposition technique (PLD). We unravel the charge, orbital, and the antiferromagnetic properties of BiFeO3 films using soft X-ray absorption spectroscopy (XAS) based on X-ray linear dichroism (LD) and magnetic X-ray linear dichroism (MLD). Simultaneously we have been pursuing approaches to understand the origin of the magnetic properties using X-ray magnetic circular dichroism (XMCD) and SQUID measurements. And hard x-ray photoemission spectroscopy (HXPES) is a powerful method can direct unravel the electronic structure. The HXPES results show the peak of Fe-2p3/2 was separated at the BiFeO3 thin films. We explain these double peaks are closely related to the multiplet structure of Fe3+. The difference in energy between the peaks was 1.15 eV. In addition, the comparison between data from the normal BFO and BFO which was cooled under a reduced O pressure (90 m torr) indicates that the HXPES data is no different. We also spent a lot of effort to measure HAXPES of BFO grown on different substrates as planned. It is clear that the HAXPES data of BFO grown differ much; we are doing calculations to extract physics out of these data. The preliminary results are quite encouraging.
目錄

1 第一章 簡介
1-1 文獻回顧
1-2 基本磁學理論
磁滯曲線
磁性的起源
磁性質分類
1-3 強關聯電子系統材料
1-31 鑭系錳氧化物基本性質
晶格場效應
Jahn-Teller 效應
超自旋交換作用(Super Exchange Interaction)
雙重自旋交換作用(Double Exchange Interaction)
1-32 鉍鐵氧(BiFeO3)基本性質
鐵電性
反鐵磁性
磁電耦合效應
1-4 相關文獻

2 第二章 實驗技術與方法
2-1 國家同步輻射研究中心光源
2-2 X光吸收光譜學(X-ray Absorption Spectroscopy ; XAS)
2-21 X光吸收基本原理
2-22 光子與物質中的電子間相互作用
2-3 軟X光吸收光譜實驗技術與儀器
2-31 國家同步輻射中心編號05B3光束線
2-32 國家同步輻射中心編號 11A光束線
2-4 光電子激發光譜學(X-ray Photoemission Spectroscopy ; PES)
2-41 光電子激發基本原理
2-42 硬X光射線光電子激發光譜學(Hard X-ray Photoemission Spectroscopy ; HXPES)
2-5 日本Spring-8編號12XU光束線
2-51 硬X光射線光電子激發光譜實驗技術與儀器
2-6 相關文獻


3 第三章 薄膜晶體結構特性與磁特性
3-1 脈衝雷射沉積法(Pulsed Laser Deposition ; PLD)製備薄膜樣品
3-11 脈衝雷射沉積法的優缺點
3-12 脈衝雷射沉積系統架構
3-13 成長有取向性的BiFeO3單層膜及BiFeO3/ La0.7Sr0.3MnO3雙層膜
3-2 X光反射率(X-Ray Reflectivity ; XRR)
3-3 X光繞射(X-Ray Diffraction ; XRD)
3-31 實驗結果
3-4 超導量子干涉儀(Superconducting Quantum Interference Device ; SQUID)
3-41 實驗結果
3-5 相關文獻

4 第四章 BFO薄膜的X光吸收光譜與光電子激發光譜的分析
4-1 簡介
4-2 實驗方法
4-3 實驗結果與討論
4-4 結論
4-5 相關文獻

5 第五章 總結
[1] 張文成, 磁性技術手冊, Page 54, 2001。
[2] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc., Reading MA (1978).
[3] C. Kittel, Introduction of Solid State Physics (7th ed.), John Wiley & Sons inc., New York, (1972).
[4] H. L. Schläfer and G. Gliemann, Basic Principles of Ligand Field Theory, Wiley Interscience: New York, (1969).
[5] H. A. Jahn and E. Teller, Proc. R. Soc. Lond. A 161, 220-235 (1937).
[6] Clarence Zener et al., Phys. Rev. 82, 403-405 (1951).
[7] W. Eerenstein et al., Nature 442, 759-765(2006)
[8] Bas B. Van Aken et al., Nature 449, 702-705 (2007).
[9] N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
[10] J. F. Scott et al., J. Am. Ceram. Soc. 91, 1762-1768 (2008).
[11] J. Wang et al., Science 299, 1719 (2003).
[12] B. B. V. Aken, J.-P. Rivera, H. Schmid and M. Fiebig, Nature 449, 704 (2007).
[13] J. R. Teague, R.Gerson and W. J. James, Solid State Commun. 8, 1073 (1970).
[14] P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski, J. Phys. C 13, 1931 (1980).
[15] V. S. Filip'ev, I. P. Smol'yaninov, E. G. Fesenko and I. I. Belyaev, Kristallografiya 5, 958 (1960).
[16] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
[17] I. Sosnowskat, T. Peterlin-Neumaier and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).
[18] C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401 (2005).
[19] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463-2485 (2009).
[20] Y.-H. Chu, L. W. Martin, M. B. Holcomb and R. Ramesh, Mater. Today 10, 16-23 (2007).
[21] Y.-H. Chu, L. W. Martin and M. B. Holcomb, Nature materials 7, 478-482 (2008).
[22] H. Be´a, M. Bibes and F. Ott, Phys. Rev. Lett. 100, 017204 (2008).
[23] D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille, A. Gukasov, Phys. Rev. Let. 100, 227602 (2008).
[24] J. Seidel et al., Nature materials 8, 229 (2009).
[25] T. Zhao et al., Nature materials 5, 823-829 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *