帳號:guest(18.118.162.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳信孚
作者(外文):Chen, Sin Fu
論文名稱(中文):鋁/銅摻雜二氧化鈰奈米粒子
論文名稱(外文):Preparation and characterization of Al/Cu doped Cerium oxide nanoparticles
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun Liang
口試委員(中文):張石麟
湯茂竹
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:100022513
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:二氧化鈰奈米粒子磁性
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗由化學熱裂解法製作出二氧化鈰(CeO2)奈米粒子,摻雜元素鋁(Al)與銅(Cu),藉由控制摻雜元素的濃度對奈米粒子的結構特性與磁性變化為研究主幹。由X光繞射(XRD)確認其製作樣品為面心立方的螢石結構,樣品中無長程有序的鋁與銅之氧化物存在,並由Scherrer equation估算製作出的晶粒大小約為8nm,經過氧氣鍛燒後增加約25nm左右。拉曼光譜確認成功摻雜元素進入二氧化鈰奈米粒子,發現隨摻雜元素濃度提高F2g mod波峰中心(Xc)有位移、半高寬增加現象,顯示晶粒經摻雜膨脹及扭曲。在X光吸收圖譜技術(XAFS)中,XANES(X-ray Absorption Near Edge Structure)顯示樣品無短程有序鋁與銅氧化物存在,發現摻雜銅5%樣品Ce(III)比例達20%;EXAFS(Extended X-Ray Absorption Fine Structure)結果得知銅為取代在二氧化鈰晶格之中。由SQUID磁性量測顯示未摻雜二氧化鈰為順磁性、經低濃度銅摻雜樣品為鐵磁性、鋁摻雜後鐵磁性有消失現象,對照XANES圖譜樣品發現銅離子”價態”有改變的趨勢。
In this thesis, we study the magnetic behaviors of Al-Cu codoped CeO2 nanocrystals. The samples were synthesized by thermal decomposition method. A variety of experimental methods such as x-ray diffraction (XRD), Raman spectroscopy, x-ray absorption fine structures (XAFS), and superconducting quantum interference device (SQUID) have been used to investigate the structures and physical properties of the materials.
Since the undoped CeO2, metallic copper (Cu) and aluminum (Al), as well as possible Cu or Al-based secondary phases, are not ferromagnetic, the appearance of ferromagnetism in the samples is a very intriguing research topic. Our x-ray diffraction (XRD) data shows only CeO2 peaks and therefore the possible formation of CuO and Al2O3 second phases can be excluded. This observation is also supported by the results of Raman spectroscopy and x-ray absorption near edge structure (XANES).
Magnetic properties of the samples were measured by the superconducting quantum interference device (SQUID) at room temperature. The 5% Cu-doped CeO2 sample exhibits room-temperature ferromagnetism while the pure CeO2 appears to be paramagnetic. However the room-temperature ferromagnetic behavior is destroyed by the addition of Al. The XANES analysis revealed that the content of Ce3+ ions in CeO2 was largely increased by incorporating 5% of Cu dopant atoms. On the other hand, addition of Al can lead to substantial decrease of Ce3+ content. By comparing the XANES spectra of doped samples with different Cu and Al concentration, we conclude that the addition of aluminum ions can effectively change the valence state of Cu and thus destroy ferromagnetism in these materials.
目錄
第一章 序論
1-1 研究動機 1
1-2 論文簡介 1
第二章 理論與文獻回顧
2-1 二氧化鈰材料介紹 2
2-2 稀磁性氧化物 4
2-3  DMO磁性理論 5
2-3-1 超交換作用 5
2-3-2 雙交換作用 6
2-3-3 RKKY交換作用 7
2-3-4 BMP理論 8
2-3-5 CTF理論 9
2-4 奈米CeO2鐵磁性來源 11
第三章 實驗原理及方法
3-1 X光繞射(X-ray diffraction; XRD) 13
3-2 超導量子干涉(SQUID) 15
3-3 拉曼光譜(Raman spectroscopy) 16
3-4 感應耦合電漿質譜儀(Inductively Coupled Plasma Mass. Spectrometry; ICP-MS) 18
3-5 X光吸收精密結構(X-ray absorption fine structure ; XAFS) 19

第四章 實驗原理及方法
4-1 樣品製備 27
4-2 實驗藥劑 28
4-3 製備流程 28
4-4 氣氛退火 31
4-5 樣品名稱 32
第五章 實驗結果數據分析與討論
5-1 X光繞射分析(XRD) 34
5-2 拉曼光譜分析(Raman spectroscopy) 37
5-3 X光吸收精密結構分析(XAFS) 41
5-3-1 近邊 X光吸收精密結構分析(XANES) 45
5-3-2 延伸 X光吸收精密結構分析(EXAFS) 52
5-4 超導量子干涉儀分析(SQUID) 59
第六章 結果與討論 61
參考文獻 62
[1] Quan Yuan, Hao-Hong Duan, Le-Le Li, Ling-Dong Sun, Ya-Wen Zhang, Chun-Hua Yan, Journal Of Colloid And Interface Science 335 (2009) 151–167
[2] S. Tsunekawa, T. Fukuda, And A. Kasuya, J. Appl. Phys., 87, 1318 (2000)
[3] R.X. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Solid State Ionics 151 (2002) 235.
[4] Ruixing Li, Shinryo Yabe, Mika Yamashita, Shigeyosi Momose, Sakae Yoshida, Shu Yin, Tsugio Sato, Materials Chemistry And Physics 75 (2002) 39–44
[5] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
[6]Y.Mastsumoto al. et , Science, 292, 854(2001)
[7]M. A. Garcia al. et, Nano Lett. 7, 1489(2007)
[8]C. Zner, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev.,82 ,403(1951)
[9]C. Zner, Interaction Between the d Shells in the Transition Metals, Phys. Rev., 81, 440(1951)
[10] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Materials, 4, 173 (2005)
[11]J. M. D. Coey, Dilute magnetic oxides, Curr. Opin ,Solid State Mater. Sci., 10, 83 (2006)
[12] A. Kaminski and S. Das Sarma , Polaron Percolation in Diluted Magnetic Semiconductors, Phys. Rev. Lett., 88, 247202(2002)
[13] Adam C. Durst, R. N. Bhatt, and P. A. Wolff , Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors, Phys. Rev. B 65, 235205 (2002)
[14] J. M. D. Coey, d0 ferromagnetism, Solid State Sci., 7, 660 (2005)
[15] M.Venkatesan, C. B. Fitzgerald, J.M.D. Coey,Unexpected magnetism in a dielectric oxide, Nature, 430, 630 (2004)
[16] C.D. Pemmaraju and S. Sanvito, Ferromagnetism Driven by Intrinsic Point
Defects in HfO2, Phys. Rev. Lett., 94, 217205 (2005)
[17] J. M. D. Coey and S.A. Chambers, Oxide dilute magnetic semiconductors – fact of fiction? , MRS Bulletin, 33, 1053 (2008)
[18] J.M.D. Coey, Kwanruthai Wongsaprom, J Alaria and M Venkatesan, Charge-transfer ferromagnetism in oxide Nanoparticles , J. Phys. D: Appl. Phys., 41, 134012 (2008)
[19] J.M.D. Coey, P Stamenov, R D Gunning, M Venkatesan and K Paul, Ferromagnetism in defect-ridden oxides and related materials ,New Journal of Physics, 12, 053025 (2010)
[20] Han X P, Lee J C, Yoo H L. Oxygen-vacancy-induced ferromagnetism in CeO2 from first principles[J].Phys. Rev. B.,2009, 79(10): 100403(R)
[21] Ge M Y, Wang H, Liu E Z, Liu J F. On The Origin of Ferroma- gnetism in CeO2 Nanocubes [J]. Appl. Phys. Lett., 2008, 93(6): 062505
[22] Singhal R K, Kumari P, Samariya A, Kumar S, Sharma S C, Xing Y T, Saitovitch E B. Role of Electronic Structure and Oxygen Defects in Driving Ferromagnetism in Nondoped Bulk CeO2 [J]. Appl. Phys. Lett., 2010,97(17): 172503
[23] Fernandes V, Mossanek R J O, Schio P, Klein J J, de Oliveira A J A, Ortiz W A, Mattoso N, Varalda J,Schreiner W H, Abbate M, Mosca D H. Dilute-defect Magnetism: Origin of Magnetism in Nanocrystalline CeO2 175[J]. Phys. Rev. B., 2009, 80(3): 035202
[24] Yang X W, Song Y Q, Zahng H W, Su H. Effects of Co dopant on the microstructure and magnetic properties of CeO2 at room temperature [J]. Journal of Magnetic Materials and Devices, 2009, 40(5): 21-25 .
[25] Vodungbo B, Zheng Y, Vidal F, Demaille D, Etgens V H, Mosca D H. Room Temperature Ferromagnetism of Co Doped CeO2-dDiluted Magnetic Oxide: Effect of Oxygen and Anisotropy [J]. Appl. Phys. Lett., 2007,90(6):062510
[26] Wen Q Y, Zhang H W, Yang Q H, Song Y Q, Xiao J Q. Effects of Fe Doped and The Dielectric Constant on The Room Temperature Ferromagnatism of Polycrystalline CeO2 Oxides [J]. J. Appl. Phys. 2010, 107(9): 09C307
[27] Thurber A, Reddy K M, Shutthanandan V, Engelhard M H, Wang C, Hays J, Punnoose A. Ferromagnetism in Chemically Synthesi- zed CeO2 Nanoparticles by Ni Doping [J]. Phys.Rev.B., 2007, 76 (16): 165206
[28] Li M J, Ge S H, Qiao W, Zhang L, Zuo Y L, Yan S M. Relationship Between The Surface Chemical States and Magnetic Properties of CeO2 Nanoparticles [J]. Appl. Phys. Lett., 2009, 94(15):152511
[29] Chen S Y, Lu Y H, Huang T W, Yan D C, Dong C L. Oxygen Vacancy Dependent Magnetism of CeO2 Nanoparticles Prepared by Thermal Decomposition Method [J]. J. Phys. Chem. C, 2010, 114: 19576–19581
[30] National Synchrotron Radiation Research Center, Taiwan Http://Www.Nsrrc.Org.Tw/
[31] S. D. Kelly, D. Hesterberg, B. Ravel ; Soil Science Society Of America, Methods Of Soil Analysis. Part 5. Mineralogical Methods. Sssa Book Series, No. 5. [4-1]Shouheng Sun, Hao Zeng, David B. Robinson, Simon Raoux, Philip M. Rice, Shan X. Wang and Guanxiong Li, “Monodisperse MFe2O4 (M=Fe, Co, Mn)Nanoparticles”, J. AM. CHEM. SOC., 126, 273 (2004)
[32] Soo Y L et al 2011 Appl. Phys. Lett. 98 031906
[33] Z. Wei, H. Li, X. Zhang, S. Yan, Z. Lv, Y. Chen, J. Alloys Compd., 455 (2008), pp. 322–326
[34] Z. Wu, H. Zhu, Z. Qin, H. Wang, J. Ding, L. Huang, J. Wang, Fuel, 104 (2013), pp. 41–45
[35] Lijun Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Yimei Zhu, D. O. Welch, And M. Suenaga, Physical Review B 69, 125415 (2004 )
[36] Xuefei Wan, Daniel Goberman, Leon L. Shaw, Guangshun Yi, And Gan-Moog Chow, Appl. Phys. Lett. 96, 123108 (2010)
[37] J. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, J. Appl. Phys. 76, 2435 (1994)
[38] Gwénaël GOUADEC and Philippe COLOMBAN, Author manuscript, published in "Progress in Crystal Growth and Characterization of Materials 53, 1 (2007) 1-56"
[39] Swanand Patil, Sudipta Seal, Yu Guo, Alfons Schulte, and John Norwood,Appl. Phys. Lett. 88, 243110 (2006); doi: 10.1063/1.2210795
[40] A. Nakajima, A. Yoshihara, M. Ishigame, Defect-induced Raman spectra
in doped CeO 2 , Phys. Rev. B 50 (1994) 13297–13307
[41]B.Z. Matovic , D.M. Buc .evac, M. Rosic ,B.M.Babic ,Z.D.Dohcevic-Mitrovic ,M.B. Radovic , Z.V. Popovic, Ceramics International 37 (2011) 3161–3165
[42] A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani,T. Jo, And J.Petiau, Phys. Rev. B 35, 806 (1987).
[43] T. K. Sham, R. A. Gordon, And S. M. Heald, Physical Review B 72, 035113 2005
[44] A. V. Soldatov And T. S. Ivanchenko, Physical Revie B, Volume 50, Number 8 15 August 1994-Ii
[45] Yu Lei, Jelena Jelic , Ludwig C. Nitsche , Randall Meyer, Jeffrey Miller, Top Catal (2011) 54:334–348
[46] Randall Meyer, Understanding Size, Adsorbate and Alloy Effects in XANES Spectroscopy
[47] Kate E. Morgan , Edward D. Burton , Perran Cook , Mark D. Raven , Robert , W. Fitzpatrick, Richard Bush , Leigh A. Sullivan , and Rosalie K. Hocking, Journal of Physics: Conference Series 190 (2009) 012144
[48] D. C. Bazin, LURE, Bât 209D, Université Paris XI, B. P. 34, 91898 Orsay Cedex France, Techniques To Understand Heterogeneous Catalyst At The Nano-Scale, 20.
[49] Peng Zhang and T. K. Sham, Physical Review Letters Volume 90, Number 24
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *