帳號:guest(18.119.130.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉映吾
論文名稱(中文):以化學氣相沉積法成長石墨烯之研究
論文名稱(外文):The Fabrication and Characterization of Chemical Vapor Deposited Graphene
指導教授(中文):陳正中
口試委員(中文):齊正中
林大欽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:100022505
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:石墨烯化學氣相沉積
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1028
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
此論文的目的是針對我們實驗室內建構一套完整的系統,以成長高品質的單層石墨烯(Graphene),並使用各種不同的鑑定方式來判斷樣品的品質。單層石墨烯是一種單由碳元素組成的薄膜材料,厚度很小,被視為極佳的二維材料。由於其特殊的六角晶格結構,造成它的能帶結構也十分特殊,因而展現特別優異的傳輸特性,以及許多二維空間下特有的物理性質。
在這篇論文中,我們使用化學氣相沉積法來成長石墨烯薄膜。並利用光學顯微鏡、拉曼光譜儀做為初步判斷樣品品質的工具。另外,為了作更深入的基礎物理研究,我們將石墨烯樣品轉移至長有二氧化矽層的高摻雜矽基板上,把薄膜製作成霍爾元件,並進行電性量測。一般以化學氣相沉積法成長石墨烯的製程中,這種轉移過程是影響其基本特性表現很重要的一項步驟。因此在文中,我們針對「轉移石墨烯」這個製程,也提出一些想法,並進行實驗,嘗試改善樣品的品質。
建立化學氣相沉積的成長參數,與嘗試不同的轉移方法之後,我們利用量測石墨烯樣品的電性,更進一部分析微觀下製程對於樣品傳輸特性的影響。再根據文獻的理論計算,解釋所量測到的電性行為。實驗結果顯示,我們對轉移製程的調整很有機會改善樣品中帶電雜質的問題。此外,我們認為藉著此次的分析的經驗,未來將有機會完成一套數值分析方法,對電性量測的數據作定量分析。
第一章  緒論
1.1 單層石墨烯 ....................................................................................................... 6
1.1.1 晶格結構 .............................................................................................. 6
1.1.2 電子的能帶結構 ................................................................................. 8
1.2 單層石墨烯的電性特色 .................................................................................. 9
1.2.1 迪拉克費米子 ..................................................................................... 9
1.2.2 電荷中性點 ........................................................................................ 10
1.2.3 雙極性場效應 .................................................................................... 11
1.3 單層石墨烯的判斷方式 ................................................................................. 11
1.3.1 光學顯微鏡 ........................................................................................ 11
1.3.2 拉曼光譜儀 ........................................................................................ 12
1.3.3 原子力顯微鏡 .................................................................................... 16
1.3.4 電性量測 ............................................................................................. 16
第二章 化學氣相沉積法成長單層石墨烯 ............................................................... 17
  2.1 單層石墨烯的製備方式 ................................................................................. 18
    2.1.1 機械剝離法 ........................................................................................... 18
    2.1.2 化學剝離法 ........................................................................................... 18
    2.1.3 磊晶成長法 ........................................................................................... 20
2.1.4 化學氣相沉積法 ................................................................................... 20
2.1.5 選擇CVD製程的原因 ......................................................................... 21
  2.2 化學氣相沉積法(CVD)製備單層石墨烯 .................................................. 22
2.2.1 CVD 機制 .............................................................................................. 22
2.2.2 CVD 石墨烯的成長機制 .................................................................... 23
    2.2.3 金屬基板 ............................................................................................... 23
    2.2.4 CVD石墨烯的銅製程 .......................................................................... 26
2.3 CVD機台配置與成長參數 .......................................................................... 27
    2.3.1 基台配置與製程參數 .......................................................................... 27
    2.3.2 調變CVD石墨烯的成長參數 ............................................................ 29
    2.3.3 成長CVD石墨烯所遇到的問題 ........................................................ 30
第三章 元件製作 ......................................................................................................... 32
  3.1 石墨烯轉移 .................................................................................................... 32
    3.1.1 石墨烯轉移方法 .................................................................................. 32
    3.1.2 石墨烯轉移問題一:下層石墨烯殘留 ............................................ 34
    3.1.3 石墨烯轉移問題二:來自蝕刻液的雜質殘留 .................................. 36
    3.1.4 結論 ........................................................................................................ 39
3.2 霍爾元件之設計 .............................................................................................. 41
    3.2.1 霍爾效應 ............................................................................................... 41
    3.2.2 四點量測 ............................................................................................... 43
3.2.3 霍爾元件 ............................................................................................... 44
  3.3 製作霍爾元件 .................................................................................................. 44
第四章 電性量測 ......................................................................................................... 46
  4.1 迪拉克錐(Dirac cone)..................................................................................... 46
4.1.1 電荷中性點平移 .................................................................................. 46
4.1.2 雜質濃度 ............................................................................................... 47
4.2 物質隨溫度變化的電性行為 ......................................................................... 49
4.2.1 非導體行為 ........................................................................................... 50
4.2.2 金屬行為 ............................................................................................... 50
  4.3 石墨烯隨溫度變化的電性行為 ..................................................................... 51
4.3.1 石墨烯的非導體行為 ............................................................................ 51
4.3.2 石墨烯的金屬行為 ................................................................................ 53
4.3.3 石墨烯的非單一行為 ............................................................................ 54
  4.4 隨載子濃度變化的電性行為 ......................................................................... 54
  4.5 載子遷移率影響電性行為 ............................................................................. 56
4.6 實驗結果與討論 .............................................................................................. 56
第五章 總結與未來展望 ............................................................................................. 59
附錄一、CVD SOP ............................................................................................................ 61
附錄二、轉移CVD石墨烯 .......................................................................................... 73
參考文獻 .......................................................................................................................... 77
1. NOVOSELOV, A.K.G.A.K.S., The rise of graphene. nature materials, MARCH 2007. 6.
2. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
3. Wallace, P., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634.
4. Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Lett, 2010.
5. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320: p. 1308.
6. Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6): p. 063124.
7. Lazzeri, M., et al., Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 2008. 78(8): p. 081406.
8. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
9. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18).
10. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
11. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9): p. 538-42.
12. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5: p. 574-578.
13. Tedesco, J.L., et al., Hall effect mobility of epitaxial graphene grown on silicon carbide. Applied Physics Letters, 2009. 95(12): p. 122102.
14. Cooper, D.R., et al., Experimental Review of Graphene. ISRN Condensed Matter Physics, 2012. 2012: p. 1-56.
15. Hass, J., W.A. de Heer, and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter, 2008. 20(32): p. 323202.
16. HAMILTON, J.C. and J.M. BLAKELY, Carbon Segregation to single crystal surfaces of Pt Pd and Co. Surface Science, 1980. 91: p. 199-217.
17. Sutter, P.W., J.I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nat Mater, 2008. 7(5): p. 406-11.
18. Kwon, S.-Y., et al., Growth of Semiconducting Graphene on Palladium. Nano Lett, 2009. 9(12): p. 3985-3990.
19. COLEMAN*, R.S.E.A.K.S., graphene film griwth on polycrystalline metals. American Chemical Society, 2012.
20. Vlassiouk, I., et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS NANO, 2011. 5: p. 6069-6076.
21. Zhang, W., et al., First-Principles Thermodynamics of Graphene Growth on Cu Surfaces. The Journal of Physical Chemistry C, 2011. 115(36): p. 17782-17787.
22. Massalski, T.B., Binary alloy phase diagrams second edition. 1990: p. 18, 839.
23. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
24. Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21(10): p. 3324.
25. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-4.
26. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett, 2009. 9(12): p. 4359-4363.
27. Adam, S., et al., A self-consistent theory for graphene transport. Proc Natl Acad Sci U S A, 2007. 104(47): p. 18392-7.
28. Tan, Y.W., et al., Measurement of Scattering Rate and Minimum Conductivity in Graphene. Physical Review Letters, 2007. 99(24).
29. Kittel, C., Introduction of solid state physics 8th edtion. 2004: p. 151.
30. Hwang, E., S. Adam, and S. Sarma, Carrier Transport in Two-Dimensional Graphene Layers. Physical Review Letters, 2007. 98(18).
31. Hwang, E. and S. Das Sarma, Screening-induced temperature-dependent transport in two-dimensional graphene. Physical Review B, 2009. 79(16).
32. Hwang, E. and S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B, 2008. 77(11).
33. Fratini, S. and F. Guinea, Substrate-limited electron dynamics in graphene. Physical Review B, 2008. 77(19).
34. Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3(4): p. 206-9.
35. Li, Q., E.H. Hwang, and S. Das Sarma, Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion. Physical Review B, 2011. 84(11).
36. Hwang, S.D.S.a.E.H., Charged Impurity-Scattering-Limited Low-Temperature Resistivity of Low-Density Silicon Inversion Layers. Physical Review Letters, 1999. 83(1): p. 164-167.
37. Heo, J., et al., Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Physical Review B, 2011. 84(3).
38. Liang, X., et al., Toward Clean and Crackless Transfer of Graphene. ACS NANO, 2011. 5(11): p. 9144-9153.
39. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 023112.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *