|
1. NOVOSELOV, A.K.G.A.K.S., The rise of graphene. nature materials, MARCH 2007. 6. 2. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9. 3. Wallace, P., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634. 4. Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Lett, 2010. 5. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320: p. 1308. 6. Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6): p. 063124. 7. Lazzeri, M., et al., Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 2008. 78(8): p. 081406. 8. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87. 9. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18). 10. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355. 11. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9): p. 538-42. 12. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5: p. 574-578. 13. Tedesco, J.L., et al., Hall effect mobility of epitaxial graphene grown on silicon carbide. Applied Physics Letters, 2009. 95(12): p. 122102. 14. Cooper, D.R., et al., Experimental Review of Graphene. ISRN Condensed Matter Physics, 2012. 2012: p. 1-56. 15. Hass, J., W.A. de Heer, and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter, 2008. 20(32): p. 323202. 16. HAMILTON, J.C. and J.M. BLAKELY, Carbon Segregation to single crystal surfaces of Pt Pd and Co. Surface Science, 1980. 91: p. 199-217. 17. Sutter, P.W., J.I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nat Mater, 2008. 7(5): p. 406-11. 18. Kwon, S.-Y., et al., Growth of Semiconducting Graphene on Palladium. Nano Lett, 2009. 9(12): p. 3985-3990. 19. COLEMAN*, R.S.E.A.K.S., graphene film griwth on polycrystalline metals. American Chemical Society, 2012. 20. Vlassiouk, I., et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS NANO, 2011. 5: p. 6069-6076. 21. Zhang, W., et al., First-Principles Thermodynamics of Graphene Growth on Cu Surfaces. The Journal of Physical Chemistry C, 2011. 115(36): p. 17782-17787. 22. Massalski, T.B., Binary alloy phase diagrams second edition. 1990: p. 18, 839. 23. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103. 24. Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21(10): p. 3324. 25. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-4. 26. Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett, 2009. 9(12): p. 4359-4363. 27. Adam, S., et al., A self-consistent theory for graphene transport. Proc Natl Acad Sci U S A, 2007. 104(47): p. 18392-7. 28. Tan, Y.W., et al., Measurement of Scattering Rate and Minimum Conductivity in Graphene. Physical Review Letters, 2007. 99(24). 29. Kittel, C., Introduction of solid state physics 8th edtion. 2004: p. 151. 30. Hwang, E., S. Adam, and S. Sarma, Carrier Transport in Two-Dimensional Graphene Layers. Physical Review Letters, 2007. 98(18). 31. Hwang, E. and S. Das Sarma, Screening-induced temperature-dependent transport in two-dimensional graphene. Physical Review B, 2009. 79(16). 32. Hwang, E. and S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B, 2008. 77(11). 33. Fratini, S. and F. Guinea, Substrate-limited electron dynamics in graphene. Physical Review B, 2008. 77(19). 34. Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3(4): p. 206-9. 35. Li, Q., E.H. Hwang, and S. Das Sarma, Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion. Physical Review B, 2011. 84(11). 36. Hwang, S.D.S.a.E.H., Charged Impurity-Scattering-Limited Low-Temperature Resistivity of Low-Density Silicon Inversion Layers. Physical Review Letters, 1999. 83(1): p. 164-167. 37. Heo, J., et al., Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Physical Review B, 2011. 84(3). 38. Liang, X., et al., Toward Clean and Crackless Transfer of Graphene. ACS NANO, 2011. 5(11): p. 9144-9153. 39. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 023112.
|