帳號:guest(18.223.209.165)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張東英
作者(外文):Chang, Tung-Ying
論文名稱(中文):Effects of surface roughness on transport properties of Dirac Fermions on Topological insulators
指導教授(中文):牟中瑜
指導教授(外文):Mou, Chung-Yu
口試委員(中文):張明哲
朱仲夏
口試委員(外文):Chang, Ming-Che
Chu, Chon-Saar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:100022503
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:41
中文關鍵詞:表面粗糙程度狄拉克費米子自旋連接渦流拓撲絕緣體
外文關鍵詞:surface roughnessDirac fermionsspin-connectionvorticesTopological insulators
相關次數:
  • 推薦推薦:0
  • 點閱點閱:151
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
拓撲絕緣體(Topological insulators)的發現為架構二維電子系統開闢了一條新的路徑。這些二維電子系統駐留在三維拓撲絕緣體的表面,而且已知它們對於非磁性的干擾有很強的抵抗性。在實驗上已知生長三維拓撲絕緣體的表面並非平坦,而是由類似粗糙的梯田所組成。在這裡,我們探討表面粗糙程度(surface roughness)對三維拓撲絕緣體的傳遞性質之影響。表面粗糙程度引起的「自旋連接」(spin-connection)修正了狄拉克費米子(Dirac fermions)。透過考慮表面粗糙程度的過渡階段,我們構造了由粗糙程度引起的渦流(vortices)結構之有效哈密頓量。通過有效哈密頓量(effective Hamiltonian),我們可以找到散射截面(scattering cross section)和相應的電導率(conductivity)。我們的分析指出即使在粗超的階段,狄拉克費米子的電導率仍然是類似於平坦的表面。粗糙程度引起的狄拉克費米子在三維拓撲絕緣體的表面傳遞之特性是溫和的變化。
The discovery of topological insulators (TIs) has pointed out a new route to construct two dimensional electronic systems. These two dimensional electronic systems reside on surfaces of 3D TIs and are known to be robust against non-magnetic perturbations. Experimentally, however, it is known that surfaces of grown 3D TIs are not flat and are composed of rough terraces. Here we investigate effects of surface roughness on transport properties of three dimensional topological insulators. It is shown that surface roughness induces spin connection correction to Dirac fermions. By considering surface roughness in the roughnening phase, we construct effective Hamiltonian due to vortices configuration of roughness. Through the effective Hamiltonian, we find the scattering cross section and the corresponding conductivity. Our analyses indicate that even in the rough phase, the conductivity of Dirac fermions still resemble that of flat surfaces. The roughness induces mild change on transport properties of Dirac fermions on surfaces of 3D TIs.
1 Introduction 1
2 Methods 5
2.1 Review of previous work . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Basic formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The eective Hamiltonian in a Dirac form . . . . . . . . . . . . . . 14
2.4 To nd dierential cross section for scattering by vortices . . . . . . 18
2.5 Scattering cross section, lifetime, and conductivity . . . . . . . . . . 22
3 Numerical results and discussion 28
4 Conclusion 34
Bibliography 34
[1] A. A. ABRIKOSOV. Fermion states on the sphere s2. International Journal
of Modern Physics A, 17(06n07):885889, 2002.
[2] Vadim M. Apalkov and Tapash Chakraborty. The fractional quantum hall
eect of tachyons in a topological insulator junction. EPL (Europhysics Let-
ters), 100(6):67008, 2012.
[3] Vadim M. Apalkov and Tapash Chakraborty. Superluminal tachyon-like excitations
of dirac fermions in a topological insulator junction. EPL (Europhysics
Letters), 100(1):17002, 2012.
[4] David R. Nelson B. I. Halperin. Resistive transition in superconducting lms.
Journal of Low Temperature Physics, Volume 36(Issue 5-6):pp 599616, 1979-
09-01.
[5] J. H. Bardarson, P. W. Brouwer, and J. E. Moore. Aharonov-bohm oscillations
in disordered topological insulator nanowires. Phys. Rev. Lett., 105:156803,
Oct 2010.
[6] Dimitrie Culcer, E. H. Hwang, Tudor D. Stanescu, and S. Das Sarma. Twodimensional
surface charge transport in topological insulators. Phys. Rev. B,
82:155457, Oct 2010.
[7] Xian-Qi Dai, Bao Zhao, Jian-Hua Zhao, Yan-Hui Li, Ya-Nan Tang, and Ning
Li. Robust surface state of intrinsic topological insulator bi 2 te 2 se thin lms:
a rst-principles study. Journal of Physics: Condensed Matter, 24(3):035502,
2012.
[8] Shi-Hai Dong, Xi-Wen Hou, and Zhong-Qi Ma. Relativistic levinson theorem
in two dimensions. Phys. Rev. A, 58:21602167, Sep 1998.
[9] R. Egger, A. Zazunov, and A. Levy Yeyati. Helical luttinger liquid in topological
insulator nanowires. Phys. Rev. Lett., 105:136403, Sep 2010.
[10] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.
Phys. Rev. Lett., 98:106803, Mar 2007.
[11] M. Z. Hasan and C. L. Kane. Colloquium. Rev. Mod. Phys., 82:30453067,
Nov 2010.
[12] Yasuhiro Hatsugai. Chern number and edge states in the integer quantum
hall eect. Phys. Rev. Lett., 71:36973700, Nov 1993.
[13] Thakshila M Herath, Prabath Hewageegana, and Vadym Apalkov. A quantum
dot in topological insulator nanolm. Journal of Physics: Condensed Matter,
26(11):115302, 2014.
[14] Bor-Luen Huang, Ming-Che Chang, and Chung-Yu Mou. Persistent currents
in a graphene ring with armchair edges. Journal of Physics: Condensed Mat-
ter, 24(24):245304, 2012.
[15] Ken-Ichiro Imura, Mayuko Okamoto, Yukinori Yoshimura, Yositake Takane,
and Tomi Ohtsuki. Finite-size energy gap in weak and strong topological
insulators. Phys. Rev. B, 86:245436, Dec 2012.
[16] Ken-Ichiro Imura and Yositake Takane. Protection of the surface states in
topological insulators: Berry phase perspective. Phys. Rev. B, 87:205409,
May 2013.
[17] Ken-Ichiro Imura, Yositake Takane, and Akihiro Tanaka. Spin berry phase in
anisotropic topological insulators. Phys. Rev. B, 84:195406, Nov 2011.
[18] Ken-Ichiro Imura, Yukinori Yoshimura, Yositake Takane, and Takahiro Fukui.
Spherical topological insulator. Phys. Rev. B, 86:235119, Dec 2012.
[19] Andrii Iurov, Godfrey Gumbs, Oleksiy Roslyak, and Danhong Huang. Photon
dressed electronic states in topological insulators: tunneling and conductance.
Journal of Physics: Condensed Matter, 25(13):135502, 2013.
[20] Dung-Hai Lee. Surface states of topological insulators: The dirac fermion in
curved two-dimensional spaces. Phys. Rev. Lett., 103:196804, Nov 2009.
[21] Sheng Li, Li Hui-Chao, Yang Yun-You, Sheng Dong-Ning, and Xing Ding-Yu.
Spin chern numbers and time-reversal-symmetry-broken quantum spin hall
eect. Chinese Physics B, 22(6):067201, 2013.
[22] Chao-Xing Liu, Xiao-Liang Qi, HaiJun Zhang, Xi Dai, Zhong Fang, and Shou-
Cheng Zhang. Model hamiltonian for topological insulators. Phys. Rev. B,
82:045122, Jul 2010.
[23] Feng Lu, Yuan Zhou, Jin An, and Chang-De Gong. Transversal propagation of
helical edge states in quantum spin hall systems. EPL (Europhysics Letters),
98(1):17004, 2012.
[24] Jie Lu, Wen-Yu Shan, Hai-Zhou Lu, and Shun-Qing Shen. Non-magnetic
impurities and in-gap bound states in topological insulators. New Journal of
Physics, 13(10):103016, 2011.
[25] Amal Medhi and Vijay B Shenoy. Continuum theory of edge states of topological
insulators: variational principle and boundary conditions. Journal of
Physics: Condensed Matter, 24(35):355001, 2012.
[26] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant
band structures. Phys. Rev. B, 75:121306, Mar 2007.
[27] Akinori Nishide, Alexey A. Taskin, Yasuo Takeichi, Taichi Okuda, Akito
Kakizaki, Toru Hirahara, Kan Nakatsuji, Fumio Komori, Yoichi Ando, and
Iwao Matsuda. Direct mapping of the spin-ltered surface bands of a threedimensional
quantum spin hall insulator. Phys. Rev. B, 81:041309, Jan 2010.
[28] Tomi Paananen, Henning Gerber, Matthias GA{tte, and Thomas Dahm. Appearance
of at surface bands in three-dimensional topological insulators in a
ferromagnetic exchange eld. New Journal of Physics, 16(3):033019, 2014.
[29] V. Parente, P. Lucignano, P. Vitale, A. Tagliacozzo, and F. Guinea. Spin
connection and boundary states in a topological insulator. Phys. Rev. B,
83:075424, Feb 2011.
[30] Kyungwha Park, Christophe De Beule, and Bart Partoens. The ageing eect
in topological insulators: evolution of the surface electronic structure of bi 2
se 3 upon k adsorption. New Journal of Physics, 15(11):113031, 2013.
[31] Arnaud Raoux, Marco Polini, Reza Asgari, A. R. Hamilton, Rosario Fazio,
and A. H. MacDonald. Velocity-modulation control of electron-wave propagation
in graphene. Phys. Rev. B, 81:073407, Feb 2010.
[32] Rahul Roy. Topological phases and the quantum spin hall eect in three
dimensions. Phys. Rev. B, 79:195322, May 2009.
[33] SHUN-QING SHEN, WEN-YU SHAN, and HAI-ZHOU LU. Topological insulator
and the dirac equation. SPIN, 01(01):3344, 2011.
[34] Nguyen?Hong Shon and Tsuneya Ando. Quantum transport in twodimensional
graphite system. Journal of the Physical Society of Japan,
67(7):24212429, 1998.
[35] Ryuji Takahashi and Shuichi Murakami. Gapless interface states between
topological insulators with opposite dirac velocities. Phys. Rev. Lett.,
107:166805, Oct 2011.
[36] Yositake Takane and Ken-Ichiro Imura. Dirac electrons on a sharply edged
surface of topological insulators. Journal of the Physical Society of Japan,
81(9):093705, 2012.
[37] Yositake Takane and Ken-Ichiro Imura. Unied description of dirac electrons
on a curved surface of topological insulators. Journal of the Physical Society
of Japan, 82(7):074712, 2013.
[38] Binghai Yan and Shou-Cheng Zhang. Topological materials. Reports on
Progress in Physics, 75(9):096501, 2012.
[39] Jr-Yu Yeh, Ming-Che Chang, and Chung-Yu Mou. Electron scattering from
a mesoscopic disk in a rashba system. Phys. Rev. B, 73:035313, Jan 2006.
[40] Liu Yi-Man, Shao Huai-Hua, Zhou Xiao-Ying, and Zhou Guang-Hui. Conned
states and spin polarization on a topological insulator thin lm modulated by
an electric potential. Chinese Physics B, 22(7):077310, 2013.
[41] Yukinori Yoshimura, Akihiko Matsumoto, Yositake Takane, and Ken-Ichiro
Imura. Perfectly conducting channel on the dark surface of weak topological
insulators. Phys. Rev. B, 88:045408, Jul 2013.
[42] Yan-Yang Zhang, Xiang-Rong Wang, and X C Xie. Three-dimensional topological
insulator in a magnetic eld: chiral side surface states and quantized
hall conductance. Journal of Physics: Condensed Matter, 24(1):015004, 2012.
[43] Yi Zhang, Ying Ran, and Ashvin Vishwanath. Topological insulators in three
dimensions from spontaneous symmetry breaking. Phys. Rev. B, 79:245331,
Jun 2009.
[44] Yi Zhang and Ashvin Vishwanath. Anomalous aharonov-bohm conductance
oscillations from topological insulator surface states. Phys. Rev. Lett.,
105:206601, Nov 2010.
[45] Cheng Zhi and Zhou Bin. Finite size eects on helical edge states in hgte quantum
wells with the spin orbit coupling due to bulk- and structure-inversion
asymmetries. Chinese Physics B, 23(3):037304, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *