|
[1] V. Arnold, Small denominators. I: Mappings of the circumference onto itself. In AMS Trans- lations, 46:213-288, 1965. (Russian original published in 1961). [2] L. Chierchia, KAM Lectures, In \Dynamical Systems. Part I: Hamiltonian Systems and Celes- tial Mechanics", Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. 1-56. Centro di Ricerca Matematica \Ennio De Giorgi" : Proceedings, 2003. [3] A. Denjoy, Sur les courbes denies par les equations dierentielles a la surface du tore, In Journal de Mathematiques Pures et Appliquees 11(1932), 333375. [4] R. Devaney, An Introduction to Chaotic Dynamical Systems, Second Edition, Addison-Wesley, 1989. [5] M. R. Herman, Sur la conjugaison dierentiable des dieomorphismes du cercle des rotations, In Publ. Math. I.H.E.S. 49, 5-233, 1979. [6] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, 1995. [7] Y. Katznelson and D. Ornstein, The dierentiablity of the conjugation of certain dieomor- phisms of the circle, In Ergodic Theory and Dynam. Sys. 9, 643-680, 1989. [8] K.Khanin and Y. Sinai, A new proof of M. Herman's Theorem, In Commun. Math. Phys. 112, 89-101, 1987. [9] A. N. Kolmogorov, On conservation of conditionally periodic motions under small perturba- tions of the hamiltonian, In Dokl. Akad. Nauk, SSSR, 98:527530, 1954 [10] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer Verlag, 1993. [11] J. Milnor, Dynamics: Introductory Lectures, 2001. [12] J.Moser, On invariant curves of area-preserving mappings of an annulus, In Nachr. Akad. Wiss., Gottingen, Math. Phys. Kl., pages 120, 1962. [13] J.Moser, A rapidly convergent interation method, II., In Ann. Scuola Norm. Sup. di Pisa, Ser. III, 20:499535, 1966. [14] I. Percival and D. Richards,Introduction to dynamics, Cambridge University Press, 1982. [15] J. Poschel, A Lecture on the Classical KAM Theorem, In Proceedings of Symposia in Pure Mathematics 69, 707{732, 2001. [16] D. A. Salamon, The Kolmogorov-Arnold-Moser theorem, FIM-Preprint, ETH-Zurich,(1986), available on http://www.math.ethz.ch/ salamon/PREPRINTS/KAM.htm [17] K.Schmidt and J.Hawkins, On C2 dieomorphisms of circle which are of type III1. In Invent math. 66, 511-518, 1982. [18] C. E. Wayne, An Introduction to KAM Theory. In Dynamical Systems and Probabilistic Meth- ods in Partial Dierential Equations (Berkeley, CA, 1994), 3-29. Amer. Math. Soc., Provi- dence, RI, 1996. [19] J.-C. Yoccoz. An introduction to small divisors problems. In From Number Theory to Physics (Les Houches, 1989), chapter 14, Springer Verlag, Berlin, 1992 |