帳號:guest(3.148.104.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃詠翔
作者(外文):Huang, Yong-Shiang
論文名稱(中文):關於KAM理論
論文名稱(外文):On Kolmogorov-Arnold-Moser Theory
指導教授(中文):陳國璋
指導教授(外文):Chen, Kuo-Chang
口試委員(中文):陳國璋
許正雄
李明佳
口試委員(外文):Chen, Kuo-Chang
Hsu, Cheng-Hsiung
Li, Ming-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:100021606
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:41
中文關鍵詞:KAM 理論擾動理論可積系統阿諾德舌頭小除數
外文關鍵詞:KAM TheoryPerturbation TheoryIntegrable SystemArnold TongueSmall Divisors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:130
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
我們將會透過兩個基本且重要的例子,有關圓上的微分同胚函數與可積漢米爾頓系統,闡明擾動理論中的KAM理論的中心想法如何運作。在過程中我們會見到小除數問題與可微性的損失這兩個問題是在何處產生與如何被克服的。
We will study two basic and important examples about circle diffeomorphisms and Hamiltonian systems, to clarify the central ideas of the celebrated Kolmogorov-Arnold-Moser Theory in perturbation theory. Two difficulties those pioneers encounter in early 20th century - problems of the small divisor and loss of differentiability, will be revealed and overcame in our procedures also.
1 Introduction 1
2 Circle Diffeomorphisms: The conjugated problems 3
2.1 Rotation number 3
2.2 Circle Diffeomorphisms 5
2.3 Arnold's Theorem 9
3 KAM Methodology for Arnold's Theorem 12
3.1 Analysis of Linearized Equation 12
3.2 The Newton Method in Banach Spaces 13
4 Analyic Diffeomorphism with Singular Conjugacy 20
4.1 Invariant measures and regularity of conjugacies 20
4.2 A Counterexample 22
5 KAM for Nearly Integrable Hamiltonian Systems 25
5.1 Formulation of the problem 25
5.2 Analysis of the Linearized Equation 29
5.3 The Newton Method in Banach Spaces 32
A The Proofs of Some Estimates in Section 5 36
Reference 41
[1] V. Arnold, Small denominators. I: Mappings of the circumference onto itself. In AMS Trans-
lations, 46:213-288, 1965. (Russian original published in 1961).
[2] L. Chierchia, KAM Lectures, In \Dynamical Systems. Part I: Hamiltonian Systems and Celes-
tial Mechanics", Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. 1-56.
Centro di Ricerca Matematica \Ennio De Giorgi" : Proceedings, 2003.
[3] A. Denjoy, Sur les courbes de nies par les equations di erentielles a la surface du tore, In
Journal de Mathematiques Pures et Appliquees 11(1932), 333375.
[4] R. Devaney, An Introduction to Chaotic Dynamical Systems, Second Edition, Addison-Wesley,
1989.
[5] M. R. Herman, Sur la conjugaison di erentiable des di eomorphismes du cercle des rotations,
In Publ. Math. I.H.E.S. 49, 5-233, 1979.
[6] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, 1995.
[7] Y. Katznelson and D. Ornstein, The di erentiablity of the conjugation of certain di eomor-
phisms of the circle, In Ergodic Theory and Dynam. Sys. 9, 643-680, 1989.
[8] K.Khanin and Y. Sinai, A new proof of M. Herman's Theorem, In Commun. Math. Phys. 112,
89-101, 1987.
[9] A. N. Kolmogorov, On conservation of conditionally periodic motions under small perturba-
tions of the hamiltonian, In Dokl. Akad. Nauk, SSSR, 98:527530, 1954
[10] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer Verlag, 1993.
[11] J. Milnor, Dynamics: Introductory Lectures, 2001.
[12] J.Moser, On invariant curves of area-preserving mappings of an annulus, In Nachr. Akad.
Wiss., Gottingen, Math. Phys. Kl., pages 120, 1962.
[13] J.Moser, A rapidly convergent interation method, II., In Ann. Scuola Norm. Sup. di Pisa, Ser.
III, 20:499535, 1966.
[14] I. Percival and D. Richards,Introduction to dynamics, Cambridge University Press, 1982.
[15] J. Poschel, A Lecture on the Classical KAM Theorem, In Proceedings of Symposia in Pure
Mathematics 69, 707{732, 2001.
[16] D. A. Salamon, The Kolmogorov-Arnold-Moser theorem, FIM-Preprint, ETH-Zurich,(1986),
available on http://www.math.ethz.ch/ salamon/PREPRINTS/KAM.htm
[17] K.Schmidt and J.Hawkins, On C2 di eomorphisms of circle which are of type III1. In Invent
math. 66, 511-518, 1982.
[18] C. E. Wayne, An Introduction to KAM Theory. In Dynamical Systems and Probabilistic Meth-
ods in Partial Di erential Equations (Berkeley, CA, 1994), 3-29. Amer. Math. Soc., Provi-
dence, RI, 1996.
[19] J.-C. Yoccoz. An introduction to small divisors problems. In From Number Theory to Physics
(Les Houches, 1989), chapter 14, Springer Verlag, Berlin, 1992
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *