帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭期佑
論文名稱(中文):A Galois Correspondence in Batyrev's Construction of Mirror Pairs
指導教授(中文):鄭志豪
口試委員(中文):卓士堯
楊一帆
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:100021602
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:25
中文關鍵詞:輪胎簇加洛瓦對應環形圓紋曲面成對鏡像巴提列夫凸分析
外文關鍵詞:Toric VarietyGalois CorrespondenceTorusMirror PairsBatyrevConvex Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:142
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本篇論文從基本的輪胎簇定義談起。而輪胎簇一開始是由仿射輪胎簇著手,接著探討投影輪胎簇並發現投影輪胎簇是由一組仿射輪胎簇黏出來的。這些抽象的代數簇都可以經由具體而簡單的凸組合資料著手構造出來。本篇論文旨在探討對偶空間中的組合資料如何對應到對偶的代數簇。當我們把所有此篇論文前六章中完成的事情複製到對偶空間中時就得到了代數簇上的加洛瓦對應。
Toric variety is a branch of algebraic geometry where combinatorics and algebraic geometry substantiate each other. In this paper we will explore how to construct abstract toric variety that can be described purely by algebraic data without embedding into affine or projective spaces from concrete combinatorial data. Two method will be introduced. The first one uses a polytope and the second one a fan. We will present how to construct a fan associated with a polytope and prove that these two methods yield isomorphic toric varieties. Finally, Galois Correspondence appears when we consider everything we have done in duality.
Acknowledements
Preliminaries
Affine Toric Varieties
Projective Toric Varieties
Abstract Varieties
Group action on Toric Varieties
Hypersurfaces in Toric Varieties
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *