|
1. B. Korenblum, A maximum principle for the Bergman space, Publ. Mat., 35, (1991), 479-486.
2. B. Korenblum, and K. Richards, Majorization and Domination in the Bergman Space, Proc. Amer. Math. Soc., 117, (1993), 153-158.
3. B. Korenblum, R. O'Neil, K. Richards and K. Zhu, Totally Monotone Functions with Applications to the Bergman Space, Trans. Amer. Math. Soc., 337, (1993), 795-806.
4. J. Matero, On Korenblum's maximum principle for the Bergman space, Proc. Arch. Math. , 64, (1995), 337-340.
5. W. Schwick, On Korenblum's maximum principle, Proc. Amer. Math. Soc., 125, (1997), 2581-2587.
6. N. Danikas and W.K. Hayman, Domination on Sets and in $H^{p}$, Results Math., 34, (1998), 85-90.
7. W. K. Hayman, On a conjecture of Korenblum, Analysis, 19, (1999), 195-205.
8. A. Hinkkanen, On a maximum principle in Bergman space, J. Anal. Math., 79, (1999), 335-344.
9. A. Schuster, The maximum principle for the Bergman space and the Mobius pseudodistance for the annulus, Proc. Amer. Math. Soc., 134, (2006), 3525-3530.
10. C. Wang, Domination in the Bergman Space and Korenblum’s Constant, Integral Equations and Operator Theory, 61, (2008), 423--432.
11. C. Wang, Behavior of the constant in Korenblum’s maximum principle, Math. Nachr., 281, (2008), 447-454.
12. S.-C., Chen, On dominating sets for uniform algebra on pseudoconvex domains, Journal of Pure and Applied Mathematics Quarterly, special issue in honor of J. J. Kohn, 6, no. 3, (2010), 715-724.
13. C. Wang, Some results on Korenblum's maximum principle, 373, (2011), J. Math. Anal. Appl., 393-398.
14. S.-C., Chen, On dominating sets for Nevanlinna class (I), Taiwanese J. Math., 15, no. 4, (2011), 1829-1840 . |