帳號:guest(18.117.186.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏臻
作者(外文):Chen, Po-Chen
論文名稱(中文):氧化鋯與氧化鈦被覆對304與304L不鏽鋼之防蝕效益及耐久度研究
論文名稱(外文):Influence and Durability of ZrO2 and TiO2 Coating on Type 304 and 304L Stainless Steels
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung-Kuang
口試委員(中文):歐陽汎怡
黃俊源
馮克林
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:100013505
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:184
中文關鍵詞:熱水沉積被覆極化掃描耐久度不同流速光激發效應
相關次數:
  • 推薦推薦:0
  • 點閱點閱:177
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
BWR許多材料組件均為304和304L不鏽鋼,長期運轉下容易發生沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)的問題。目前世界均採用加氫水化學(Hydrogen Water Chemistry, HWC)和貴重金屬添加(Noble Metal Chemical Addition, NMCA)技術,來防制IGSCC的發生。但這些方法有副作用,因此近年抑制性被覆(Inhibitive Protective Coatings, IPC)逐漸發展。
根據文獻,利用熱水沉積法被覆氧化鋯和氧化鈦在304不鏽鋼的防蝕效果已被證實。本實驗的主要目的,就是要測試氧化鋯和氧化鈦被覆層在304和304L不鏽鋼上的耐久度。測試的方法,是將試片放置在除氧、濃度為2 mM K3Fe(CN)6 與K4Fe(CN)6混合溶液中,進行高流速沖刷4周,以電化學方法測試被覆層是否會剝落。結果顯示,被覆過後試片的腐蝕速度較未被覆慢,證明被覆層抑制金屬腐蝕效益。且經過長期高流速耐久度的沖刷測試,被覆試片的電化學性質均沒有明顯改變,由此可見抑制性被覆層在304與304L不鏽鋼上,有四周的耐久度。
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 xi
表目錄 xxi
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
1.3 論文結構 5
第二章 文獻回顧 6
2.1 應力腐蝕龜裂 6
2.1.1 應力腐蝕龜裂肇因 7
2.1.2 應力腐蝕龜裂機制 8
2.1.3 SCC破裂特徵 12
2.1.4 防治方法 12
2.2 不鏽鋼組件在高溫形成氧化膜的特性 16
2.2.1 高溫純水中不鏽鋼表面氧化層結構 16
2.2.2 拉曼散射光譜分析 23
2.3 電化學參數介紹 24
2.3.1 混合電位模式 (Mixed Potential Model, MPM) 24
2.3.2 影響ECP大小的重要參數 27
2.3.3電化學腐蝕電位與應力腐蝕龜裂關係 28
2.3.4 伊凡斯圖 (Evan’s Diagram) 29
2.3.5 電化學阻抗頻譜 30
2.4 加氫水化學(HWC)與貴重金屬添加(NMCA)特性 32
2.4.1 加氫水化學 32
2.4.2 貴重金屬添加 33
2.5 氧化鋯抑制性被覆(ZrO2 Coating) 35
2.5.1 抑制性覆膜機制 35
2.5.2 伊凡斯圖 (Evans Diagram) 38
2.5.3 溶膠凝膠法(Sol-gel) 41
2.5.4 電漿噴灑法(Plasma Spray) 42
2.5.5 化學添加法(Chemical Addition) 43
2.5.6 熱水沉積法(Hydrothermal Deposition) 46
2.5.7 氧化鋯光觸媒防蝕應用技術 51
2.6 氧化鈦抑制性被覆(TiO2 Coating) 53
2.6.1 溶膠凝膠法(Sol-gel) 53
2.6.2 噴霧熱解法(Spray Pyrolysis) 55
2.6.3 電漿噴灑法(Plasma Spray) 57
2.6.4 化學添加注射法(Chemical Injection Method) 58
2.6.5 原子層沉積技術(Atomic Layer Deposition) 60
2.6.6 熱水沉積法(Hydrothermal Deposition) 62
2.7 高流速的影響 65
2.7.1高流速對電化學腐蝕電位的影響 65
2.7.2高流速對應力腐蝕龜裂的影響 67
2.7.3高流速對抑制性被覆膜的影響 70
第三章 研究方法 73
3.1實驗方法與流程 73
3.2試片準備 75
3.3 敏化程度測試 75
3.4 預長氧化膜 77
3.5 抑制性被覆 77
3.6 實驗設備 78
3.6.1 模擬BWR水循環系統 78
3.6.2抑制性被覆系統 80
3.6.3 參考電極製作 81
3.6.4 常溫高流速系統 82
3.6.5 照光裝置 83
3.7 表面分析 86
3.7.1 基材元素成分定量分析 86
3.7.2 SEM表面微結構分析與EDX成分分析 86
3.7.3 TEM試片橫截面(Cross Section)分析與EDX成分分析 87
3.7.4 拉曼光譜儀(Raman Spectroscopy) 87
3.7.5 感應式耦合電漿質譜分析(ICP-MS) 88
3.8 高溫電化學分析 89
3.9 常溫電化學分析 91
3.9.1 常溫高流速耐久度動態電位極化掃描 91
3.9.2 常溫不同流速動態電位極化掃描 92
3.9.3 常溫照光動態電位極化掃描 92
3.9.4 常溫電化學交流阻抗分析 93
3.10 動態極化掃描分析方法 94
第四章 實驗結果 97
4.1敏化測試 97
4.2 預長氧化膜結果分析 98
4.2.1 掃描式電子顯微鏡 (SEM) 98
4.2.2 雷射拉曼散射光譜 (LRS) 102
4.3 氧化鋯被覆試片表面分分析 105
4.3.1 掃瞄式電子顯微鏡 (SEM) 105
4.3.2 雷射拉曼散射光譜 (LRS) 108
4.3.3 感應耦合電漿質譜分析 (ICP-MS) 112
4.4 氧化鈦被覆試片表面分分析 113
4.4.1 掃瞄式電子顯微鏡 (SEM) 113
4.4.2 雷射拉曼散射光譜 (LRS) 117
4.4.3 感應耦合電漿質譜分析 (ICP-MS) 120
4.5 穿隧式電子顯微鏡(TEM)橫截面分析 121
4.5.1 氧化鈦抑制性被覆橫截面分析 121
4.5.2 氧化鋯抑制性被覆橫截面分析 125
4.6 高溫動態電位極化掃描 126
4.7 常溫高流速動態電位極化掃描 128
4.7.1 304不鏽鋼氧化鋯被覆層耐久度極化曲線 129
4.7.2 304L不鏽鋼氧化鋯被覆層耐久度極化曲線 137
4.7.3 304不鏽鋼氧化鈦被覆層耐久度極化曲線 145
4.7.4 304L不鏽鋼氧化鈦被覆層耐久度極化曲線 154
4.8常溫不同流速動態電位極化掃描 162
4.8.1 304不鏽鋼未被覆與被覆試片極化曲線 162
4.8.2 304L不鏽鋼未被覆與被覆試片極化曲線 165
4.9 常溫照光動態電位極化掃描 167
4.9.1照射UV光極化曲線 167
4.9.2照射Γ-ray極化曲線 171
4.10 常溫電化學阻抗分析 174
第五章 結論 176
第六章 未來工作 178
參考文獻 179
1. Barberis, P., T. Merle-Mejean, and P. Quintard, On Raman Spectroscopy of Zirconium Oxide Films. Journal of Nuclear Materials, 1997. 246: p. 232-243.
2. Jayaweera, P., S. Hettiarachchi, and H. Ocken, Determination of High Temperature Zeta Potential and pH of Zero Charge of Some Transition Metal Oxides. Colloids and Surface A: Physicochemical and Engineering Aspects, 1994. 85: p. 19-27.
3. Keeling, D.P.T.a.D.R., www.esrl.noaa.gov/gmd/ccgg/trends/.
4. IEA, Energy Balances of OECD Countries, 2012 ; Energy Balances of NON-OECD Countries, 2012, Global Energy Network Institute.
5. Commission, U.S.N.R., Cracking of Vertical Welds in the Core Shroud and Degraded Repair. NRC Information Notice 97-17, , April 4, 1997.
6. Andresen, P.L., Factors Governing the Prediction of LWR Component SCC Behavior From Laboratory Data, in National Association of Corrosion Engineers1999, NACE Interantional: San Antonio, Tx.
7. 楊文斗, 反應堆材料學. 原子能出版社, 2000: p. 125-130.
8. 行政院原子能委員會, 核二廠一號機反應爐支撐裙板錨定螺栓斷裂事件暨修復後運轉安全評估報告, 2012.
9. Andresen, P., Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water, in National Association of Corrosion Engineers2007, NACE International: Nashville, Tennessee.
10. Jr., W.D.C., Materials Science and Engineering - An Introduction, 5th Edition. 1999.
11. Chung, P.C.-K., Quantitative Study of the Degree of Sensitization of Austenitic Stainless Steel by Electrochemical Measurements. 1979: Ohio State University.
12. Busby, J.T., G.S. Was, and E.A. Kenik, Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels. Journal of Nuclear Materials, 2002. 302(1): p. 20-40.
13. Wilde, B.E., Stress Corrosion Cracking. Vol. Failure Analysis and Prevention. 1986: American Society for Metals. 203.
14. Ford, P., Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288oC water, in Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors1988.
15. Ford, P., Stress Corrosion Cracking of Low Alloy Steels Under BWR Conditions; Assessment of CHR Algorithms, in International Symposium on Environment Degradation of Materials in Nuclear Power Systems-Water Reactors1999.
16. Angeliu, T.M., P.L. Andresen, and F.P. Ford, Apolying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments in National Association of Corrosion Engineers1998, NACE International: San Diego Ca.
17. 鍾自強, 焊接奧斯田鐵不锈鋼的問題及解決方法. 機械月刊, 中華民國七十年10月號. 第七卷第十期.
18. Ford, F. and P. Andresen, Corrosion in Nuclear Systems: Environment Assisted Cracking in Light Water Reactors, 1994: New York. p. 501-546.
19. Kazushige, I., W. Yoichi, and T. Masahiko, Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation. Journal of Nucler Science and Technology, 2006.
20. Kaesche, H., Die Korrosion der Metalle physikalisch-chemische Prinzipien und aktuelle Probleme. 1990: Springer.
21. Winkler, R., H. Lehmann, and F. Michel, VGB Kraftwerkstechnik, 1989. 69: p. 527-531.
22. Asakura, Y., et al., Relationships Between Corrosion Behavior of AISI 304 Stainless Steel in High-Temperature Water and Its Oxide Film Structure. Corrosion, 1989. 45: p. 119-124.
23. Winkler, R., F. Huttner, and F. Michel, Senkung der Korrosionsrate im Primarkreislauf von Druckwasserreaktoren zur Begrenzung radioaktiver Ablagerungen. VGB Kraftwerkstechnik, 1989. 69: p. 524-531.
24. Kim, Y.J., Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288℃ Water, in International Water Chemistry Conference2004: San Francisco.
25. Kim, Y.J., Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288oC Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide. Corrosion, 1999. 55.
26. Miyazawa, T., S. Uchida, and T. Satoh, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses. Journal of Nuclear Science and Technology, 2005. 42(2): p. 233-241.
27. Murayama, Y., T. Satoh, and S. Uchida, Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (V). Journal of Nuclear Science and Technology, 2002. 39: p. 1199-1206.
28. Miyazawa, T., T. Terachi, and S. Uchida, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses. Journal of Nuclear Science and Technology, 2006. 43(8): p. 884-895.
29. Wada, Y., A. Watanabe, and M. Tachibana, Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Tmeperature Water, (IV) Effects of Oxide Film on Electrochemical Corrosion Potential. Jounal of Nuclear Science and Technology, 2001. 38: p. 183-192.
30. Macdonald, D., Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in Boiling-Water Reactor Coolant Environment. Corrosion, 1996. 52.
31. Uhlig, H.H. and R.W. Revie, Corrosion and Corrosion Control. p. Chapter 7.
32. Kim, Y.J., In-Situ Electrochemical Impedance Measurement of Oxide Film Formed on Type 304 Stainless Steel in High-Temperature Water. Corrosion, 2000. 56: p. 389-394.
33. Stellwag, B. and R. Kilian, Investigations into Chemistry-Related Alternatives to Hydrogen Water Chemistry in BWR Plants, in International Workshop on LWR Cooloant Water Radiolysis & Electrochemistry2000.
34. Cowan, R., The mitigation of IGSCC of BWR internals with hydrogen water chemistry. Nuclear energy, 1997. 36(4): p. 257-264.
35. Lin, C.C., F.R. Smith, and R.L. Cowan, Effects of Hydrogen Water Chemistry on Radiation Field Buildup in BWRs. Nuclear Engineering and Design, 1996. 166: p. 31-36.
36. Hunter, R.J., Zeta Potential in Colloid Science : Principles and Applications. 1988: Academic Press.
37. Zhou, Z.F., E. Chalkova, and S.N. Lvov, Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation. Corrosion Science, 2007. 49: p. 830-843.
38. Atik, M. and M.A. Aegerter, Corrosion resistant sol-gel ZrO2 coatings on Stainless Steel. Journal of Non-Crystalline Solids, 1992. 147&148: p. 813-819.
39. Kim, Y.J. and P.L. Andresen, Application of Insulated Protective Coatings for Reduction of Corrosion Potential of Type 304 Stainless Steel in High-Temperature Water. Corrosion, 1998. 54: p. 1012-1017.
40. Yeh, T.K., M.Y. Lee, and C.H. Tsai, Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels Treated with Inhibitive Chemicals in Simulated Boiling Water Reactor Environments. Journal of Nuclear Science and Technology, 2002. 39: p. 531-539.
41. Yeh, T.K., C.T. Liu, and C.H. Tsai, The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogen on Type 304 Stainless Steels in High Temperature Water. Journal of Nuclear Science and Technology, 2005. 42: p. 809-815.
42. Yeh, T.K., C.H. Tsai, and Y.H. Cheng, The Influence of Dissolved Hydrogen on the Corrosion of Type 304 Stainless Steels Treated with Inhibitive Chemicals in High Temperature Pure Water. Journal of Nuclear Science and Technology, 2005. 42: p. 462-469.
43. Yeh, T.K., Y.C. Chien, and B.Y. Wang, Electrochemical Characteristics of Zirconium Oxide Treated Type 304 Stainless Steels of Different Surface Oxide Structures in High Temperature Water. Corrosion Science, 2008. 50: p. 2327-2337.
44. Zhou, Z.F., Optimization of Zirconium Oxide Coating Technology to Mitigate IGSCC in BWRs, in BWRVIP Mitigation Committee Meeting2002.
45. Yeh, T.-K. and P.-I. Wu, Corrosion of ZrO2 treated type 304 stainless steels in high temperature pure water
with various amounts of hydrogen peroxide. Progress in Nuclear Energy, 2012: p. 62-70.
46. Ono, S., M. Miyano, and M. Hishida, ECP decrease of ceramic coated stainless steel by Radiation Induced Surface Activation, in International Symposium on Mechanism and Application of Radiation Induced Surface Activation2005: Tokyo, Japan.
47. G. X. Shen, Y. C. Chen, C. J. Lin, Thin Solid Films, 489 (2005) 130-136
48. Y. Ohko, S. Saitoh, T. Tatsuma, and Akira Fujishima, Journal of The Electrochemical Society, 148 (1) B24-B28 (2001).
49. Masato Okamura et al. Corrosion Mitigation of BWR Structural Materials by the Photoelectric Methods with TiO2 -Laboratory Experiments of TiO2 Effect on ECP Behavior and Materials Integrity, ENVIRONMENTAL DEGRADATION OF MATERIALS IN NUCLEAR SYSTEMS-WATER REACTORS (2005).
50. M. Okamura et al., SCC Mitigation Method of BWR Structural materials by TiO2 technique, Proc. Symposium on Water Chemistry and Corrosion of Nuclear Power Plants in Asia, Taipei, Taiwan, September 26-28 p.117 (2007).
51. K.Takamori et. al, Corrosion Mitigation of BWR Structural Materials by the Photoelectric Method with TiO2 - A SCC Mitigation Technique and its Feasibility Evaluation , 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2005.
52. K.Takamori et. al, DEVELOPMENT OF BWR COMPONENTS SCC MITIGATION METHOD BY THE TiO2 TREATING TECHNIQUE, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, British Columbia, (2007).
53. C. X. Shan, X. Hou, K.-L. Choy, Surface & Coatings Technology, 202 (2008) 2399–2402.
54. Yeh, T.-K., et al., Hydrothermal treatments of TiO< sub> 2 on Type 304 stainless steels for corrosion mitigation in high temperature pure water. Nuclear Engineering and Design, 2013. 254: p. 228-236.
55. C. C. Lin, F. R. Smith, Decomposition of Hydrogen Peroxide at Elevated Temperature, EPRI Report NP-6733, 1990.
56. D. D. Macdonald et al., Corrosion Potential Measurements on Type 304 SS and Alloy 182 in Simulated BWR Environments,Corrosion-January , 8-16, 1993.
57. Anders Molander and Mats Ullberg, "The Corrosion Potential of Stainless Steel in BWR Environment Comparison of Data and Modeling Results, Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia,2003.
58. Fong, C., FLOW EFFECTS ON THE STRESS CORROSION CRACKING OF SENSITIZED STAINLESS STEELS UNDER BWR ENVIRONMENTS. 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, 2007.
59. N. Hiraide, K. Sugimoto, Degradation of nitride, carbide and oxide ceramics materials in high temperature aqueous solutions, Boshoku Gijyutsu, 37, 415, 1988.
60. T. Kawakubo, H. Hirayama, A. Goto et al., Corrosion Behavior of Ceramics in High Purity Water at 290oC, Zairyo, 1989.
61. Young-Jin Kim and Peter L. Andresen, Application of Insulated Protective Coating for 304 SS SCC Mitigation in 288oC Water, 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems , 2003.
62. Kazushige ISHIDA et al., Effects of Flow Rate on Dissolution of Monocrystal Aluminaand Monocrystal Yttria-Stabilized Zirconia in High-Temperature Pure Water, Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 46, No. 12, p. 1120–1128, 2009.
63. R. Katsura et al., DL-EPR Study of Neutron Irradiation in Type 304 Stainless Steel, Corrosion 48,1992.
64. Ohsaka, T., F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2. Journal of Raman Spectroscopy, 1978. 7(6): p. 321-324.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *