|
1. Edwards-Moulds, J. and L.L. Woods, Blood groups : P, I, Sda, and Pr. 1991, Arlington, Va.: American Association of Blood Banks. ix, 151 p. 2. Muzykantov, V.R., Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opinion on Drug Delivery, 2010. 7(4): p. 403-427. 3. Woodle, M.C., et al., Sterically Stabilized Liposomes - Reduction in Electrophoretic Mobility but Not Electrostatic Surface-Potential. Biophysical Journal, 1992. 61(4): p. 902-910. 4. Winkelmann, J.C. and B.G. Forget, Erythroid and Nonerythroid Spectrins. Blood, 1993. 81(12): p. 3173-3185. 5. Mohandas, N. and P.G. Gallagher, Red cell membrane: past, present, and future. Blood, 2008. 112(10): p. 3939-3948. 6. Fearon, D.T., Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A, 1979. 76(11): p. 5867-71. 7. Iida, K. and V. Nussenzweig, Complement receptor is an inhibitor of the complement cascade. J Exp Med, 1981. 153(5): p. 1138-50. 8. Nicholsonweller, A., et al., Isolation of a Human-Erythrocyte Membrane Glycoprotein with Decay-Accelerating Activity for C-3 Convertases of the Complement-System. Journal of Immunology, 1982. 129(1): p. 184-189. 9. Schonermark, S., et al., Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol, 1986. 136(5): p. 1772-6. 10. Sugita, Y., Y. Nakano, and M. Tomita, Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem, 1988. 104(4): p. 633-7. 11. Davies, A., et al., CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med, 1989. 170(3): p. 637-54. 12. Holguin, M.H., et al., Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest, 1989. 84(1): p. 7-17. 13. Okada, N., et al., A novel membrane glycoprotein capable of inhibiting membrane attack by homologous complement. Int Immunol, 1989. 1(2): p. 205-8. 14. Oldenborg, P.A., et al., Role of CD47 as a marker of self on red blood cells. Science, 2000. 288(5473): p. 2051-4. 15. Oldenborg, P.A., H.D. Gresham, and F.P. Lindberg, CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med, 2001. 193(7): p. 855-62. 16. Ricklin, D. and J.D. Lambris, Complement-targeted therapeutics. Nature Biotechnology, 2007. 25(11): p. 1265-1275. 17. Hu, C.M.J., et al., Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale, 2014. 6(1): p. 65-75. 18. Hu, C.M.J., R.H. Fang, and L.F. Zhang, Erythrocyte-Inspired Delivery Systems. Advanced Healthcare Materials, 2012. 1(5): p. 537-547. 19. Ihler, G.M., R.H. Glew, and F.W. Schnure, Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A, 1973. 70(9): p. 2663-6. 20. Pierige, F., et al., Cell-based drug delivery. Adv Drug Deliv Rev, 2008. 60(2): p. 286-95. 21. Nicolau, C. and K. Gersonde, Incorporation of inositol hexaphosphate into intact red blood cells. I. Fusion of effector-containing lipid vesicles with erythrocytes. Naturwissenschaften, 1979. 66(11): p. 563-6. 22. Matovcik, L.M., I.G. Junga, and S.L. Schrier, Drug-induced endocytosis of neonatal erythrocytes. Blood, 1985. 65(5): p. 1056-63. 23. Murciano, J.C., et al., Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol, 2003. 21(8): p. 891-6. 24. Muzykantov, V.R. and R.P. Taylor, Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement. Anal Biochem, 1994. 223(1): p. 142-8. 25. Chambers, E. and S. Mitragotri, Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release, 2004. 100(1): p. 111-9. 26. Chambers, E. and S. Mitragotri, Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood), 2007. 232(7): p. 958-66. 27. Chambers, E. and S. Mitragotri, Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. Journal of Controlled Release, 2004. 100(1): p. 111-119. 28. Simone, E.A., T.D. Dziubla, and V.R. Muzykantov, Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliv, 2008. 5(12): p. 1283-300. 29. Kim, T.H., et al., Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model. Mol Pharm, 2012. 9(1): p. 135-43. 30. Merkel, T.J., et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(2): p. 586-591. 31. Doshi, N., et al., Red blood cell-mimicking synthetic biomaterial particles. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(51): p. 21495-21499. 32. Hsu, Y.C., et al., Reduced phagocytosis of colloidal carriers using soluble CD47. Pharm Res, 2003. 20(10): p. 1539-42. 33. Tsai, R.K. and D.E. Discher, Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol, 2008. 180(5): p. 989-1003. 34. Tsai, R.K., P.L. Rodriguez, and D.E. Discher, Self inhibition of phagocytosis: the affinity of 'marker of self' CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis, 2010. 45(1): p. 67-74. 35. Lejeune, A., et al., Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res, 1994. 14(3A): p. 915-9. 36. Moorjani, M., et al., Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res, 1996. 16(5A): p. 2831-6. 37. Desilets, J., et al., Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res, 2001. 21(3B): p. 1741-7. 38. Hu, C.M.J., et al., Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 10980-10985. 39. Gao, W.W., et al., Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013. 25(26): p. 3549-3553. 40. Timko, B.P., T. Dvir, and D.S. Kohane, Remotely Triggerable Drug Delivery Systems. Advanced Materials, 2010. 22(44): p. 4925-4943. 41. Simpson, C.R., et al., Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998. 43(9): p. 2465-2478. 42. Wijaya, A., et al., Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. Acs Nano, 2009. 3(1): p. 80-86. 43. Lee, S.E., et al., Remote Optical Switch for Localized and Selective Control of Gene Interference. Nano Letters, 2009. 9(2): p. 562-570. 44. Barhoumi, A., et al., Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy. Chemical Physics Letters, 2009. 482(4-6): p. 171-179. 45. Braun, G.B., et al., Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates. Acs Nano, 2009. 3(7): p. 2007-2015. 46. Yavuz, M.S., et al., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 2009. 8(12): p. 935-939. 47. Sershen, S.R., et al., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 2000. 51(3): p. 293-298. 48. Wu, G.H., et al., Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. Journal of the American Chemical Society, 2008. 130(26): p. 8175-+. 49. Amir, R.J., et al., Self-immolative dendrimers. Angewandte Chemie-International Edition, 2003. 42(37): p. 4494-4499. 50. Kulkarni, R.V. and B. Sa, Evaluation of pH-Sensitivity and Drug Release Characteristics of (Polyacrylamide-Grafted-Xanthan)-Carboxymethyl Cellulose-Based pH-Sensitive Interpenetrating Network Hydrogel Beads. Drug Development and Industrial Pharmacy, 2008. 34(12): p. 1406-1414. 51. Steinberg, Y., et al., Triggered release of aqueous content from liposome-derived sol-gel nanocapsules. Langmuir, 2007. 23(24): p. 12024-12031. 52. Derfus, A.M., et al., Remotely triggered release from magnetic nanoparticles. Advanced Materials, 2007. 19(22): p. 3932-+. 53. Kost, J., K. Leong, and R. Langer, Ultrasound-Enhanced Polymer Degradation and Release of Incorporated Substances - (Controlled Release Drug Delivery Systems). Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(20): p. 7663-7666. 54. Ogura, M., S. Pahwal, and S. Mitragotri, Low-frequency sonophoresis: Current status and future prospects. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1218-1223. 55. Ferrara, K.W., Driving delivery vehicles with ultrasound. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1097-1102. 56. Wang, J., et al., High-Frequency Ultrasound-Responsive Block Copolymer Micelle. Langmuir, 2009. 25(22): p. 13201-13205. 57. Lentacker, I., S.C. De Smedt, and N.N. Sanders, Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter, 2009. 5(11): p. 2161-2170. 58. Hernot, S. and A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene delivery. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1153-1166. 59. Kheirolomoom, A., et al., Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle. Journal of Controlled Release, 2007. 118(3): p. 275-284. 60. Dromi, S., et al. Pulsed-high intensity focused ultrasound (HIFU) enhanced delivery of Doxorubicin using heat sensitive liposome (Thermodox TM). in Proceedings of the 91st Annual Meeting of the Radiological Society of North America. 2005. 61. Dromi, S., et al., Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clinical Cancer Research, 2007. 13(9): p. 2722-2727. 62. Schroeder, A., et al., Ultrasound triggered release of cisplatin from liposomes in murine tumors. Journal of Controlled Release, 2009. 137(1): p. 63-68. 63. Husseini, G.A. and W.G. Pitt, Micelles and nanoparticles for ultrasonic drug and gene delivery. Advanced Drug Delivery Reviews, 2008. 60(10): p. 1137-1152. 64. Zhang, H.J., et al., High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. Journal of Controlled Release, 2009. 139(1): p. 31-39. 65. Apfel, R.E., Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis, 1998, Google Patents. 66. Kripfgans, O.D., et al., Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine and Biology, 2000. 26(7): p. 1177-1189. 67. Wong, Z.Z., et al., Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter, 2011. 7(8): p. 4009-4016. 68. Qamar, A., et al., Dynamics of acoustic droplet vaporization in gas embolotherapy. Applied Physics Letters, 2010. 96(14). 69. Kripfgans, O.D., et al., In vivo droplet vaporization for occlusion therapy and phase aberration correction. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2002. 49(6): p. 726-738. 70. Sheeran, P.S., et al., Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials, 2012. 33(11): p. 3262-3269. 71. Sheeran, P.S., et al., Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging. Ultrasound in Medicine and Biology, 2011. 37(9): p. 1518-1530. 72. Wang, C.H., et al., Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials, 2012. 33(6): p. 1939-1947. 73. Zhang, X., R. Goncalves, and D.M. Mosser, The isolation and characterization of murine macrophages. Curr Protoc Immunol, 2008. Chapter 14: p. Unit 14 1. 74. Dayton, P.A., et al., Optical and acoustical observations of the effects of ultrasound on contrast agents. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1999. 46(1): p. 220-232. 75. Kakhniashvili, D.G., L.A. Bulla, and S.R. Goodman, The human erythrocyte proteome - Analysis by ion trap mass spectrometry. Molecular & Cellular Proteomics, 2004. 3(5): p. 501-509. 76. Kikkawa, Y. and J.H. Miner, Review: Lutheran/B-CAM: A laminin receptor on red blood cells and in various tissues. Connective Tissue Research, 2005. 46(4-5): p. 193-199. 77. Hall, J.E. and A.C. Guyton, Guyton and Hall textbook of medical physiology. 12th ed. 2011, Philadelphia, Pa.: Saunders/Elsevier. xix, 1091 p. |