|
(1) Hayes, J. D.; McLellan, L. I. Glutathione and glutathione- dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273-300. (2) Board, P. G.; Menon, D. Glutathione transferase, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta 2013, 1830, 3267-3288. (3) Beuckmann, C. T.; Fujimori, K.; Urade, Y.; Hayaishi, O. Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain. Neurochem. Res. 2000, 2, 733-738. (4) Flanagan, J. U.; Smythe, M. L. Sigma-class glutathione transferases, Drug Metab. Rev. 2011, 43, 194-214. (5) Johansson, A. S.; Mannervik, B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J. Biol. Chem. 2001, 276, 33061-33065. (6) Tetlow, N.; Coggan, M.; Casarotto, M. G.; Board, P. G. Functional polymorphism of human glutathione transferase A3: effects on xenobiotic metabolism and steroid biosynthesis. Pharmacogenet. Genomics 2004, 14, 657-663. (7) Anuradha, D.; Reddy, K. V.; Kumar, T. C.; Neeraja, S.; Reddy, P. R.; Reddanna, P. Purification and characterization of rat testicular glutathione S-transferases: role in the synthesis of eicosanoids. Asian J. Androl. 2000, 2, 277-282. (8) Schr¨oder, O.; Sj¨ostr¨om, M.; Qiu, H.; Stein, J.; Jakobsson, P.-J. Molecular and catalytic properties of three rat leukotriene C4 synthase homologs. Biochem. Biophys. Res. Commun. 2003, 312, 271-276. (9) Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 2009, 8, 579-591. (10) Mannervik, B.; Board, P. G.; Hayes, J. D.; Listowsky, I.; Pearson, W. R. Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol. 2005, 401, 1-8. (11) Hayes, J. D.; Flanagan, J. U.; Jowsey, I. R. Glutathione transferases, Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51-88. (12) Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 2010, 17, 1373-1380. (13) Guthenberg, C.; Warholm, M.; Rane, A.; Mannervik, B. Two distinct forms of glutathione transferase from human foetal liver. Purification and comparison with isoenzymes isolated from adult liver and placenta. Biochem. J. 1986, 235, 741-745. (14) Mannervik, B. Five Decades with Glutathione and the GSTome. J. Biol. Chem. 2012, 287, 6072-6083. (15) Tidefelt, U.; Elmhorn-Rosenborg, A.; Paul, C.; Hao, X. Y.; Mannervik, B.; Eriksson, L. C. Expression of glutathione transferase pi as a predictor for treatment results at different stages of acute nonlymphoblastic leukemia. Cancer Res. 1992, 52, 3281-3285. (16) Howells, R. E.; Dhar, K. K.; Hoban, P. R.; Jones, P. W.; Fryer, A. A.; Redman, C.W.; Strange, R. C. Association between glutathione-S-transferase GSTP1 genotypes, GSTP1 over-expression, and outcome in epithelial ovarian cancer. Int. J. Gynecol. Cancer 2004, 14, 242-250. (17) Mannervik, B.; Castro, V. M.; Danielson, U. H.; Tahir, M.K.; Hansson, J.; Ringborg, U. Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis 1987, 8, 1929-1932. (18) Shea, T. C.; Kelley, S. L.; Henner, W. D. Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 1988, 48, 527-533. (19) Kawakatsu, M.; Goto, S.; Yoshida, T.; Urata, Y.; Li, T.-S. Nuclear translocation of glutathione S-transferase π is mediated by a non-classical localization signal. Biochem. Biophys. Res. Commun. 2011, 411, 745-750. (20) Goto, S.; Kawakatsu, M.; Izumi, S.; Urata, Y.; Kageyama, K.; Ihara, Y.; Koji, T.; Kondo, T. Glutathione S-transferase π localizes in mitochondria and protects aganist oxidative stress. Free Radic. Biol. Med. 2009, 46, 1392-1403. (21) Tew, K. D.; Monks, A.; Barone, L.; Rosser, D.; Akerman, G.; Montali, J. A.; Wheatley, J. B.; Schmidt, D. E. Jr. Glutathione associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol. Pharmacol. 1996, 50, 149-159. (22) Sau, A.; Tregno, P. F.; Valentino, F.; Federici, G.; Caccuri, M. A. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 2010, 500, 116-122. (23) Townsend, D. M.; Tew, K. D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003, 22, 7369-7375. (24) Adler, V.; Yin, Z.; Fuchs, S. Y.; Benezra, M.; Rosario, L.; Tew, K. D.; Pincus, M. R.; Sardana, M.; Henderson, C. J.; Wolf, C. R.; Davis, R. J.; Ronai, Z. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 1321-1334. (25) Castro-Caldas, M.; Carvalho, A.N.; Rodrigues, E.; Henderson, C.; Wolf, C.R.; Gama, M.J. Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol. Neurobiol. 2012, 45, 466-477. (26) Wu, G. S. Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer Metastasis Rev. 2007, 26, 579-585. (27) Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 2009, 8, 579-591. (28) Schafer, F. Q.; Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30, 1191-1212 . (29) Boonstra, J.; Post, J. A. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004, 337, 1-13. (30) Kong, Q.; Beel, J. A.; Lillehei, K. O. A threshold concept for cancer therapy. Med. Hypotheses 2000, 55, 29-35. (31) Irmak, M. B.; Ince, G.; Ozturk, M.; Cetin-Atalay, R. Acquired tolerance of hepatocellular carcinoma cells to selenium deficiency: a selective survival mechanism? Cancer Res. 2003, 63, 6707-6715. (32) Elchuri, S.; Oberley, T. D.; Eisenstein, R. S.; Jackson Roberts, L.; Van Remmen, H.; Epstein, C. J.; Huang T. T. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005, 24, 367-380. (33) Egler, R. A.; Fernandes, E.; Rothermund, K.; Sereika, S.; de Souza-Pinto, N.; Jaruga, P.; Dizdaroglu, M.; Prochownik, E. V. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 2005, 24, 8038-8050. (34) Trachootham, D.; Zhou, Y.; Zhang, H.; Demizu, Y.; Pelicano, H.; Chiao, P. J.; Achanta, G.; Arlinghaus, R. B.; Lie, J.; Huang, P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006, 10, 241-252. (35) Wu, J. H.; Batist, G. Glutathione and glutathione analogues; Therapeutic potentials. Biochim. Biophys. Acta 2013, 1830, 3350-3353. (36) Chen, Y.; Swanson, R. A. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J. Neurochem. 2003, 84, 1332-1339. (37) Backos, D. S.; Franklin, C. C.; Reigan, P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmcol. 2012, 83, 1005-1012. (38) Levy, E. J.; Anderson, M. E.; Meister, A. Transport of glutathione diethyl ester into human cells. Proc. Natl. Acad. Sci. USA 1993, 90, 9171-9175. (39) Minhas, H. S.; Thornalley, P. J. Comparison of the delivery od reduced glutathione into P388D1 cells by reduced glutathione and its mono- and diethyl ester derivatives. Biochem. Pharmacol. 1995, 10, 1475-1482. (40) Raposo do Amaral, A. S.; Pawlick, R. L.; Rodrigues, E.; Costal, F.; Pepper, A.; Ferreira Galva˜o, F. H.; Correa-Giannella, M. L.; Shapiro, A. M. J. Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and Transplant Outcomes in a Murine Marginal Islet Mass Model. PLoS One 2013, 8, e55288. (41) Hamilton, D.; Batist, G. Glutathione analogues in cancer treatment. Curr. Oncol. Rep. 2004, 6, 116-122. (42) Viirlaid, S. Novel glutathione analogues and their antioxidant activity. Tartu 2011, 106p. (43) Lucente, G.; Luisi, G.; Pinnen, F. Design and synthesis of glutathione analogues. Il Farmaco 1998, 721-735. (44) Anderson, M. F. Glutathione: an overview of biosynthesis and modulation. Chem. Biol. Interact. 1998, 111-112, 1-14. (45) Cacciatore, I.; Cornacchia, C.; Pinnen, F.; Mollica, A.; Di Stefano, A. Prodrug approach for increasing cellular glutathione levels. Molecules 2010, 15, 1242-1264. (46) Anderson, M. E.; Meister, A. Glutathione Monoester. Anal. Biochem. 1989, 183, 16-20. (47) Cole, S. P.; Deeley, R. G. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol. Sci. 2006, 27, 438-446. (48) Lyon, R. P.; Hill, J.J.; Atkins, W. M. Novel class of bivalent glutathione S-transferase inhibitors. Biochemistry 2003, 42, 10418-10428. (49) Meyer, D. J. Significance of an unusually low Km for glutathione in glutathione transferases of the alpha, mu and pi classes. Xenobiotica 1993, 23, 823-834. (50) Burg, D.; Mulder, G. J. Glutathione conjugates and their synthrtic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab. Rev. 2002, 34, 821-863. (51) Gunther, T.; Ahlers, J. Specificity of ethacrynic acid as a sulfhydryl reagent. Arzneimittelforschung 1976, 26, 13-14. (52) Wang, R.; Song, D.; Zhao, G.; Zhao, L.; Jing, Y. Ethacrynic acid butyl-ester induces apoptosis in leukemia cells through a hydrogen peroxide-mediated pathway independent of glutathione S-transferase P1-1 inhibition. Cancer Res. 2007, 67, 7856-7864. (53) Aizawa, S.; Ookawa, K.; Kudo, T.; Asano, J.; Hayakari, M.; Tsuchida, S. Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci. 2005, 94, 886-893. (54) Ploemen, J. H.; van Ommen, B., Bogaards, J. J.; van Bladeren, P. J. Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 1993, 23, 913-923. (55) Huang, H.-L.; Yeh, C.-N.; Chang, K.-W.; Chen, J.; Lin, K.-J.; Chiang, L.-W.; Jeng, K.-C.; Wang, W.-T.; Lim, K.-H.; Chen, C. G.; Lin, K.-I.; Huang, Y.-C.; Lin, W.- J; Yen, T.-C.; Yu, C.-S. Synthesis and Evaluation of [18F]Fluorobutyl Ethacrynic Amide: A Potential PET Tracer for Studying Glutathione Transferase. Bioorg. Med. Chem. Lett. 2012, 22, 3998-4003. (56) Li, X.-G.; Haaparanta, M.; Solin, O. Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review. J. Fluor. Chem. 2012, 143, 49-56. (57) Fani, M.; Maecke, H. R. Radiopharmaceutical development of radiolabelled peptide. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, S11-S30. (58) Philip, M.; Rowley, D. A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology 2004, 14(6), 433-39. (59) Virchow, R. Reizung und Reizbarkeit. Arch. Pathol. Anat. Klin. Med. 1858, 14, l-63. (60) Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 2001, 357, 539-545. (61) Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436-444. (62) Virchow, R. Aetiologie der neoplastischen Geschwülste/Pathogenie der neoplastischen Geschwülste. In: Die Krankhaften Geschwülste. Berlin: Verlag von August Hirschwald; 1863, 57-101. (63) Aggarwal, B. B.; Shishodia, S.; Sandur, S. K.; Pandey, M. K.; Sethi, G. Inflammation and cancer: How hot isthe link? Biochem. Pharmacol. 2006, 72, 1605-1621. (64) Itzkowitz, S. H.; Yio, X. Inflammation and cancer. IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G7-17. (65) Lu, H., Ouyang, W.; Huang, C. Inflammation, a key event in cancer development. Mol. Cancer. Res. 2006, 4, 221-233. (66) Paumi, C. M.; Smitherman, P. K.; Townsend, A. J.; Morrow, C. S. Glutathione Stransferases (GSTs) inhibit transcriptional activation by the peroxisomal proliferator-activated receptor γ (PPARγ ) ligand, 15-deoxy-Δ12,14-prostaglandin J2(15-d-PGJ2). Biochemistry 2004, 43, 2345-2352. (67) Goswami, B.; Rajappa, M.; Sharma, M.; Sharma, A. Inflammation. Its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int. J. Gynecol. Cancer 2008, 18, 591-599. (68) Macarthur, M.; Hold, G. L.; El-Omar, E. M. Inflammation and cancer. II. Role of chronic inflammation and cytokine polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G515-520. (69) Tai, H. H. Prostaglandin catabolic enzymes as tumor suppressors. Cancer Metastasis Rev. 2011, 30, 409-417. (70) Hata, A. N.; Breyer, R. M. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther. 2004, 103, 147–166. (71) Lewis, R. A.; Soter, N. A.; Diamond, P. T.; Austen, K. F.; Oates, J. A.; Roberts, L. J. Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. 1982, 129, 1627-1631. (72) Tanaka, K.; Ogawa, K.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Cutting Edge: Differential Production of Prostaglandin D2 by Human Helper T Cell Subsets. Immunol. 2000, 164, 2277-2280. (73) Joo, M.; Sadikot, R. T. PGD synthase and PGD2 in immune response. Mediat. Inflamm. 2012, 2012, 6 503128. (74) Ricciotti, E.; FitzGerald, G. A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol.2011, 31, 986-1000. (75) Smith, W. L. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem. Sci. 2008, 33, 27-37. (76) Ogorochi, T.; Narumiya, S.; Mizuno, N.; Yamashita, K.; Miyazaki, H.; Hayaishi, O. Regional distribution of prostaglandins D2, E2, and F2α and related enzymes in postmortem human brain. J. Neurochem. 1984, 43, 71-82. (77) Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev. 2011, 15, 411-418. (78) Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep regulation. Biochim. Biophys. Acta 1999, 1436, 606-615. (79) Watanabe, T.; Narumiva, S.; Shimizu, T.; Havaishi, O. Characterization of the biosynthetic pathway of prostaglandin D2 in human platelet-rich plasma. J. Biol. Chem. 1982, 257, 14847-14853. (80) Song, W.-L.; Stubbe, J.; Ricciotti, E.; Alamuddin, N.; Ibrahim, S.; Crichton, I.; Prempeh, M.; Lawson, J. A.; Wilensky, R. L.; Rasmussen, L. M.; Puré, E.; FitzGerald, G. A. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans. J. Clin. Invest. 2012, 122, 1459-1468. (81) Zhang, X.; Young, H. A. PPAR and immune system-what do we know? Int. Immunopharmacol. 2002, 2, 1029-1044. (82) Giles, H.; Leff, P. The biology and pharmacology of PGD2. Prostaglandins, 1988, 35, 277-300. (83) Inoue, T.; Irikura, D.; Okazaki, N.; Kinugasa, S.; Matsumura, H.; Uodome, N.; Yamamoto, M.; Kumasaka, T.; Miyano, M.; Kai, Y.; Urade, Y. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nat. Struct. Biol. 2003, 10, 291-296. (84) Scher J. U.; Pillinger M. H. 15d-PGJ2: The anti-inflammatory prostaglandin? Clin. Immunol. 2005, 114, 100-109. (85) Spite, M.; Serhan, C. N. Novel lipid mediators promote resolution of acute inflammation impact of aspirin and statins. Circ. Res. 2010, 107, 1170-1184. (86) Lee, H. N.; Na, H. K.; Surh, Y. J. Resolution of inflammation as a novel chemopreventive strategy. Semin. Immunopathol. 2013, 35,151-161. (87) Kagitani-Shimono, K.; Mohri, I.; Oda, H.; Ozono, K.; Suzuki, K.; Urade, Y.; Taniike, M. Lipocalin-type prostaglandin D synthase (β-trace) is upregulated in the αB-crystallin-positive oligodendrocytes and astrocytes in the chronic multiple sclerosis. Neuropathol. Appl. Neurobiol. 2006, 32, 64-73. (88) Saleem, S.; Shah, Z. A.; Urade, Y.; Dore, S. Lipocalin-prostaglandin D synthase is a critical beneficial factor in transient and permanent focal cerebral ischemia. Neuroscience 2009, 160, 248-254. (89) Li, Z.; Conti, P. S. Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Delivery Rev. 2010, 62, 1031-1051. (90) Garcia, E. V. Physical attributes, limitations, and future potential for PET and SPECT. J. Nuc.l Cardiol. 2012, 19(Suppl 1), S19–29. (91) Vallabhajosula, S. Molecular Imaging: Radiopharmaceuticals for PET and SPECT.; Springer, 2009. (92) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. A convenient catalyst for Aqueous and Protein Suzuki-Miyaura CrossCoupling. J. Am. Chem. Soc. 2009, 131, 16346-16347. (93) Falck, J. R.;Sangras, B.; Capdevila, J. H. Preparation of N-tBoc L-glutathine dimethyl and di-tert-butyl ester: Versatile synthetic building blocks. Bioorg. Med. Chem. 2007, 15, 1062-1066. (94) Van Lancker, F.; Adams, A.; De Kimpe, N. Chemical Modifications of Peptides and Their Impact on Food Properity. Chem. Rev. 2011, 111, 7876-7903. (95) Anderson, M. E.; Powrie, F.; Puri, R. N.; Meister, A. Glutathione Monoethyl Ester: Preparation, Uptake by Tissues, and Conversion to Glutathione. Arch. Biochem. Biophys. 1985, 239, 538-548. (96) 廖國延 合成胺基醣苷神經醯胺類似物以建構醯胺化分子庫之研究;國立清華大學碩士論文 2009 (97) 蘇元孝 便利的合成4-疊氮-1-丁基胺並用以建構篩選芬布芬及利尿酸之分子庫;國立清華大學碩士論文 2009 (98) Kocieński, P. J. Protecting groups.; Thieme, 2005. (99) Chen, B.-C.; Skoumbourdis, A. P.; Guo, P.; Bednarz, M. S.; Kocy, O. R.; Sundeen, J. E.; Vite, G. D. A Facile Method for the Transformation of N-(tert-Butoxycarbonyl) r-Amino Acids to N-Unprotected r-Amino Methyl Esters. J. Org. Chem. 1999, 64, 9294-9296. (100) Faust, M. R.; Höfner, G.; Pabel, J.; Wanner, K. T. Azetidine derivatives as novel g-aminobutyric acid uptake inhibitors: Synthesis, biological evaluation, and structureeactivity relationship. Eur. J. Med. Chem. 2010, 45, 2453-2466. (101) Cline, D. J.; Redding, S. E.; Brohawn, S. G.; Psathas, J. N.; Schneider, J. P.; Thorpe, C. New Water-Soluble Phosphines as Reductants of Peptide and Protein Disulfide Bonds: Reactivity and Membrane Permeability. Biochemistry 2004, 43, 15195-15203. (102) Humphrey, R. E.; Potter, J. Reduction of DiIsulfides with Tributylphosphine. L. Awl. Chem. 1965, 37, 164-165. (103) Sweet, D. V., ED. Registry of Toxic Effects of Chemical Substances.; US Government Printing Office: Washington, 1988. (104) Yasui, S.; Tojob, S.; Majima, T. Effects of substituents on aryl groups during the reaction of triarylphosphine radical cation and oxygen. Org. Biomol. Chem., 2006, 4, 2969-2973. (105) Yin, C.; Huo, F.; Zhang, J.; Martı´nez-Ma´n˜ez, R.; Yang, Y.; Lv H.; Li, S. Thiol-addition reactions and their applications in thiol recognition. Chem. Soc. Rev., 2013, 42, 6032—6059. (106) Pezzola, S.; Antonini, G.; Geroni, C.; Beria, I.; Colombo, M.; Broggini, M.; Mongelli, N.; Leboffe, L.; MacArthur, R.; Mozzi, A. F.; Federici, G.; Caccuri, A. M. Role of Glutathione Transferases in the Mechanism of Brostallicin Activation. Biochemistry, 2010, 49, 226–235. (107) Pettigrew, N. E.; Brush, E. J.; Colman, R. F. 3-Methyleneoxindole: an affinity label of glutathione S-transferase pi which targets tryptophan 38. Biochemistry 2001, 40, 7549-7558. (108) Streitwi, A.; Wilkins, C. L.; Kiehlman, E. Kinetic and Isotope Effects in Solvolyses of Ethyl Trifluoromathanesulfonate. J. Am. Chem. Soc. 1968, 90, 1598-1601. (109) Cai, L.; Lu, S.; Pike, V. W. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem. 2008, 2853-2873. (110) Wee, A. G. H.; Fan, G.-J.; Bayirinoba, H. M. Nonracemic Bicyclic Lactam Lactones via Regio- and cis-Diastereocontrolled C-H Insertion. Asymmetic Synthesis of (8S,8aS)-Octahydroindolizidin-8-ol and (1S, 8aS)- Octahydroindolizidin-1-ol. J. Org. Chem. 2009, 74, 8261-8271. (111) Baptista, L.; Bauerfeldt, G. F.; Arbilla, G.; Silva, E. C. Theoretical study of fluorination reaction by diethylaminosulfur trifluoride (DAST). J. Mol. Struct. (THEOCHEM) 2006, 761, 73-81. (112) Middleton, W. J. New Fluorinating Reagents. Dialkylaminosulfur Fluorides. J. Org. Chem. 1975, 40, 574. (113) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew. Chem. Int. Ed. 2013, 52, 8214 – 8264. (114) 俞鐘山 Organic Preparative Requirements for Investigations on the Preparaqtion of 18F- and 80Br-labelled Nucleoside Analogues Usefull Tools for Monitoring Gene Therapy. Ruprecht-Karls-Universität Heidelberg, 1999. (115) Qu, W.; Zha, Z.; Ploessl, K.; Lieberman, B.P.; Zhu, L.; Wise, D.R.; Thompson, C.B.; Kung, H.F. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J. Am. Chem. Soc. 2011, 133, 1122-1133. (116) Ashworth, I. W.; Cox, B. G.; Meyrick, B. Kinetics and Mechanism of N-Boc Cleavage: Evidence of a Second-Order Dependence upon Acid Concentration. J. Org. Chem. 2010, 75, 8117-8125. (117) Kim, D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H.; Katzenellenbogen, J. A.; Chi, D. Y. Facile Nucleophilic Fluorination Reactions Using tert-Alcohols as a Reaction Medium: Significantly Enhanced Reactivity of Alkali Metal Fluorides and Improved Selectivity. J. Org. Chem. 2008, 73, 957-962. (118) Kogias, E.; Osterberg, N.; Baumer, B.; Psarras, N.; Koentages, C.; Papazoglou, A.; Saavedra, J. E.; Keefer, L. K.; Weyerbrock, A. Growth-inhibitory and chemosensitizing effects of the glutathione- S-transferase-p-activated nitric oxide donor PABA/NO in malignant gliomas. Int. J. Cancer 2011, 130, 1184-1194.
|