帳號:guest(3.135.220.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):田書帆
論文名稱(中文):榖胱甘肽類似物製程設計與放射性標誌
論文名稱(外文):Designing synthetic procedure of glutathione analogs and their radiolabeling
指導教授(中文):俞鐘山
口試委員(中文):夏克山
周鳳英
王世楨
洪明秀
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:100012544
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:148
中文關鍵詞:穀胱甘肽類似物放射標誌正子影像造影劑利尿酸
相關次數:
  • 推薦推薦:0
  • 點閱點閱:425
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
穀胱甘肽移轉酶是參與體內抗氧化系統中重要的酵素之一,而在癌細胞的抗細胞凋亡機制中,會因為癌細胞內過多的氧化壓力而使得穀胱甘太移轉酶的表現量增加,因此我們利用兩種穀胱甘肽移轉酶的受體:利尿酸與穀胱甘肽,進行結構的修飾和放射性氟標誌後,連結烯基與硫醇基得到目標產物[18F]Flurobutyl ethacrynic amide glutath- ione dimethylester(FBuEA-GS-dME),細胞累積實驗結果證實當穀胱甘肽上的羧酸基以甲基酯化後可促進 [18F]FBuEA-GS-dME進入細胞的能力,未來藉由正子影像造影可以觀察[18F] FBuEA-GS-dME在體內的累積,將可進一步得知Flurobutyl ethacrynic amide(FBuEA)做為穀胱甘肽輔基(prosthetic group)的效用。
由市售穀胱甘肽做為起始物,進行一級胺基與羧酸基的保護(產率23.9%),與實驗室發展出的N-tBoc-N-(4-hydroxybutyl)ethacrynic amide進行耦合並製備出氟化前驅物,五步總產率為13%;以[18F] FBuEA與2號化合物進行耦合,順利合成出最終的[18F]FBuEA-GS- dME,整體放射產率1.2%(由H18F產出開始計算),放射比活度7.98 GBq/μmole。
目錄
摘要 I
Abstract II
謝誌 III
縮寫對照表 IV
第一章 緒論 1
1、穀胱甘肽S-移轉酶(Glutathione S-transferases,GSTs) 1
1-1 GSTs的分類 2
1-2 GSTP1-1 4
1-3 氧化壓力(Oxidative Stress)(27) 6
2、 榖胱甘肽(Glutathione,GSH) 8
2-1 GSH之功能 8
2-2 GSH與GSH酯化類似物(GSH-Ester analogues) 9
2-3 GSH耦合物(GSH Conjugates) 11
3、 GSTs抑制物(GSTs Inhibitors) 12
3-1 利尿酸(Ethacrynic Acid,EA)與Flurobutyl ethacrynic amide (FBuEA) 12
3-2 FBuEA-GS 13
4、 發炎(Inflammation)與GSTs 13
4-1 前列腺素(Prostaglandins,PGs) 14
4-2 前列腺素D2(Prostaglandin D2,PGD2) 17
4-3 PGDSs 18
5、 放射性標誌 20
5-1 分子影像 20
5-2 Fluorine-18(18F)(91) 21
第二章 實驗動機與逆合成分析 23
1、實驗動機 23
2、逆合成分析 24
3、實驗流程 26
第三章 實驗部分 27
1、 一般實驗方法 27
2、 非放射實驗方法與光譜 30
3、 放射標誌實驗 59
3-1 生產H18F 59
3-2 前驅物標誌 59
3-3 去Boc保護 60
3-4 與2號化合物耦合 60
4、 細胞累積實驗([18F]FBuEA-GS-dME) 61
第四章 結果與討論 63
1、 2、3、4號化合物製備 63
2、 5號化合物製備 70
3、 9號化合物製備 72
4、 10號化合物製備 74
5、 由9號化合物製備11號化合物 76
6、 由10號化合物製備11號化合物 79
7、 12號化合物(FBuEA-GS-dME)製備 81
8、 放射性氟化標誌 82
9、 細胞累積實驗 88
第五章 結論 92
參考資料 93
Appendix 109
(1) Hayes, J. D.; McLellan, L. I. Glutathione and glutathione- dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999, 31, 273-300.
(2) Board, P. G.; Menon, D. Glutathione transferase, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta 2013, 1830, 3267-3288.
(3) Beuckmann, C. T.; Fujimori, K.; Urade, Y.; Hayaishi, O. Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain. Neurochem. Res. 2000, 2, 733-738.
(4) Flanagan, J. U.; Smythe, M. L. Sigma-class glutathione transferases, Drug Metab. Rev. 2011, 43, 194-214.
(5) Johansson, A. S.; Mannervik, B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J. Biol. Chem. 2001, 276, 33061-33065.
(6) Tetlow, N.; Coggan, M.; Casarotto, M. G.; Board, P. G. Functional polymorphism of human glutathione transferase A3: effects on xenobiotic metabolism and steroid biosynthesis. Pharmacogenet. Genomics 2004, 14, 657-663.
(7) Anuradha, D.; Reddy, K. V.; Kumar, T. C.; Neeraja, S.; Reddy, P. R.; Reddanna, P. Purification and characterization of rat testicular glutathione S-transferases: role in the synthesis of eicosanoids. Asian J. Androl. 2000, 2, 277-282.
(8) Schr¨oder, O.; Sj¨ostr¨om, M.; Qiu, H.; Stein, J.; Jakobsson, P.-J. Molecular and catalytic properties of three rat leukotriene C4 synthase homologs. Biochem. Biophys. Res. Commun. 2003, 312, 271-276.
(9) Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 2009, 8, 579-591.
(10) Mannervik, B.; Board, P. G.; Hayes, J. D.; Listowsky, I.; Pearson, W. R. Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol. 2005, 401, 1-8.
(11) Hayes, J. D.; Flanagan, J. U.; Jowsey, I. R. Glutathione transferases, Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51-88.
(12) Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 2010, 17, 1373-1380.
(13) Guthenberg, C.; Warholm, M.; Rane, A.; Mannervik, B. Two distinct forms of glutathione transferase from human foetal liver. Purification and comparison with isoenzymes isolated from adult liver and placenta. Biochem. J. 1986, 235, 741-745.
(14) Mannervik, B. Five Decades with Glutathione and the GSTome. J. Biol. Chem. 2012, 287, 6072-6083.
(15) Tidefelt, U.; Elmhorn-Rosenborg, A.; Paul, C.; Hao, X. Y.; Mannervik, B.; Eriksson, L. C. Expression of glutathione transferase pi as a predictor for treatment results at different stages of acute nonlymphoblastic leukemia. Cancer Res. 1992, 52, 3281-3285.
(16) Howells, R. E.; Dhar, K. K.; Hoban, P. R.; Jones, P. W.; Fryer, A. A.; Redman, C.W.; Strange, R. C. Association between glutathione-S-transferase GSTP1 genotypes, GSTP1 over-expression, and outcome in epithelial ovarian cancer. Int. J. Gynecol. Cancer 2004, 14, 242-250.
(17) Mannervik, B.; Castro, V. M.; Danielson, U. H.; Tahir, M.K.; Hansson, J.; Ringborg, U. Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis 1987, 8, 1929-1932.
(18) Shea, T. C.; Kelley, S. L.; Henner, W. D. Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 1988, 48, 527-533.
(19) Kawakatsu, M.; Goto, S.; Yoshida, T.; Urata, Y.; Li, T.-S. Nuclear translocation of glutathione S-transferase π is mediated by a non-classical localization signal. Biochem. Biophys. Res. Commun. 2011, 411, 745-750.
(20) Goto, S.; Kawakatsu, M.; Izumi, S.; Urata, Y.; Kageyama, K.; Ihara, Y.; Koji, T.; Kondo, T. Glutathione S-transferase π localizes in mitochondria and protects aganist oxidative stress. Free Radic. Biol. Med. 2009, 46, 1392-1403.
(21) Tew, K. D.; Monks, A.; Barone, L.; Rosser, D.; Akerman, G.; Montali, J. A.; Wheatley, J. B.; Schmidt, D. E. Jr. Glutathione associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol. Pharmacol. 1996, 50, 149-159.
(22) Sau, A.; Tregno, P. F.; Valentino, F.; Federici, G.; Caccuri, M. A. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 2010, 500, 116-122.
(23) Townsend, D. M.; Tew, K. D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003, 22, 7369-7375.
(24) Adler, V.; Yin, Z.; Fuchs, S. Y.; Benezra, M.; Rosario, L.; Tew, K. D.; Pincus, M. R.; Sardana, M.; Henderson, C. J.; Wolf, C. R.; Davis, R. J.; Ronai, Z. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 1321-1334.
(25) Castro-Caldas, M.; Carvalho, A.N.; Rodrigues, E.; Henderson, C.; Wolf, C.R.; Gama, M.J. Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol. Neurobiol. 2012, 45, 466-477.
(26) Wu, G. S. Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer Metastasis Rev. 2007, 26, 579-585.
(27) Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 2009, 8, 579-591.
(28) Schafer, F. Q.; Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30, 1191-1212 .
(29) Boonstra, J.; Post, J. A. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004, 337, 1-13.
(30) Kong, Q.; Beel, J. A.; Lillehei, K. O. A threshold concept for cancer therapy. Med. Hypotheses 2000, 55, 29-35.
(31) Irmak, M. B.; Ince, G.; Ozturk, M.; Cetin-Atalay, R. Acquired tolerance of hepatocellular carcinoma cells to selenium deficiency: a selective survival mechanism? Cancer Res. 2003, 63, 6707-6715.
(32) Elchuri, S.; Oberley, T. D.; Eisenstein, R. S.; Jackson Roberts, L.; Van Remmen, H.; Epstein, C. J.; Huang T. T. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005, 24, 367-380.
(33) Egler, R. A.; Fernandes, E.; Rothermund, K.; Sereika, S.; de Souza-Pinto, N.; Jaruga, P.; Dizdaroglu, M.; Prochownik, E. V. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 2005, 24, 8038-8050.
(34) Trachootham, D.; Zhou, Y.; Zhang, H.; Demizu, Y.; Pelicano, H.; Chiao, P. J.; Achanta, G.; Arlinghaus, R. B.; Lie, J.; Huang, P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006, 10, 241-252.
(35) Wu, J. H.; Batist, G. Glutathione and glutathione analogues; Therapeutic potentials. Biochim. Biophys. Acta 2013, 1830, 3350-3353.
(36) Chen, Y.; Swanson, R. A. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J. Neurochem. 2003, 84, 1332-1339.
(37) Backos, D. S.; Franklin, C. C.; Reigan, P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmcol. 2012, 83, 1005-1012.
(38) Levy, E. J.; Anderson, M. E.; Meister, A. Transport of glutathione diethyl ester into human cells. Proc. Natl. Acad. Sci. USA 1993, 90, 9171-9175.
(39) Minhas, H. S.; Thornalley, P. J. Comparison of the delivery od reduced glutathione into P388D1 cells by reduced glutathione and its mono- and diethyl ester derivatives. Biochem. Pharmacol. 1995, 10, 1475-1482.
(40) Raposo do Amaral, A. S.; Pawlick, R. L.; Rodrigues, E.; Costal, F.; Pepper, A.; Ferreira Galva˜o, F. H.; Correa-Giannella, M. L.; Shapiro, A. M. J. Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and Transplant Outcomes in a Murine Marginal Islet Mass Model. PLoS One 2013, 8, e55288.
(41) Hamilton, D.; Batist, G. Glutathione analogues in cancer treatment. Curr. Oncol. Rep. 2004, 6, 116-122.
(42) Viirlaid, S. Novel glutathione analogues and their antioxidant activity. Tartu 2011, 106p.
(43) Lucente, G.; Luisi, G.; Pinnen, F. Design and synthesis of glutathione analogues. Il Farmaco 1998, 721-735.
(44) Anderson, M. F. Glutathione: an overview of biosynthesis and modulation. Chem. Biol. Interact. 1998, 111-112, 1-14.
(45) Cacciatore, I.; Cornacchia, C.; Pinnen, F.; Mollica, A.; Di Stefano, A. Prodrug approach for increasing cellular glutathione levels. Molecules 2010, 15, 1242-1264.
(46) Anderson, M. E.; Meister, A. Glutathione Monoester. Anal. Biochem. 1989, 183, 16-20.
(47) Cole, S. P.; Deeley, R. G. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol. Sci. 2006, 27, 438-446.
(48) Lyon, R. P.; Hill, J.J.; Atkins, W. M. Novel class of bivalent glutathione S-transferase inhibitors. Biochemistry 2003, 42, 10418-10428.
(49) Meyer, D. J. Significance of an unusually low Km for glutathione in glutathione transferases of the alpha, mu and pi classes. Xenobiotica 1993, 23, 823-834.
(50) Burg, D.; Mulder, G. J. Glutathione conjugates and their synthrtic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab. Rev. 2002, 34, 821-863.
(51) Gunther, T.; Ahlers, J. Specificity of ethacrynic acid as a sulfhydryl reagent. Arzneimittelforschung 1976, 26, 13-14.
(52) Wang, R.; Song, D.; Zhao, G.; Zhao, L.; Jing, Y. Ethacrynic acid butyl-ester induces apoptosis in leukemia cells through a hydrogen peroxide-mediated pathway independent of glutathione S-transferase P1-1 inhibition. Cancer Res. 2007, 67, 7856-7864.
(53) Aizawa, S.; Ookawa, K.; Kudo, T.; Asano, J.; Hayakari, M.; Tsuchida, S. Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci. 2005, 94, 886-893.
(54) Ploemen, J. H.; van Ommen, B., Bogaards, J. J.; van Bladeren, P. J. Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 1993, 23, 913-923.
(55) Huang, H.-L.; Yeh, C.-N.; Chang, K.-W.; Chen, J.; Lin, K.-J.; Chiang, L.-W.; Jeng, K.-C.; Wang, W.-T.; Lim, K.-H.; Chen, C. G.; Lin, K.-I.; Huang, Y.-C.; Lin, W.- J; Yen, T.-C.; Yu, C.-S. Synthesis and Evaluation of [18F]Fluorobutyl Ethacrynic Amide: A Potential PET Tracer for Studying Glutathione Transferase. Bioorg. Med. Chem. Lett. 2012, 22, 3998-4003.
(56) Li, X.-G.; Haaparanta, M.; Solin, O. Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review. J. Fluor. Chem. 2012, 143, 49-56.
(57) Fani, M.; Maecke, H. R. Radiopharmaceutical development of radiolabelled peptide. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, S11-S30.
(58) Philip, M.; Rowley, D. A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology 2004, 14(6), 433-39.
(59) Virchow, R. Reizung und Reizbarkeit. Arch. Pathol. Anat. Klin. Med. 1858, 14, l-63.
(60) Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 2001, 357, 539-545.
(61) Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436-444.
(62) Virchow, R. Aetiologie der neoplastischen Geschwülste/Pathogenie der neoplastischen Geschwülste. In: Die Krankhaften Geschwülste. Berlin: Verlag von August Hirschwald; 1863, 57-101.
(63) Aggarwal, B. B.; Shishodia, S.; Sandur, S. K.; Pandey, M. K.; Sethi, G. Inflammation and cancer: How hot isthe link? Biochem. Pharmacol. 2006, 72, 1605-1621.
(64) Itzkowitz, S. H.; Yio, X. Inflammation and cancer. IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G7-17.
(65) Lu, H., Ouyang, W.; Huang, C. Inflammation, a key event in cancer development. Mol. Cancer. Res. 2006, 4, 221-233.
(66) Paumi, C. M.; Smitherman, P. K.; Townsend, A. J.; Morrow, C. S. Glutathione Stransferases (GSTs) inhibit transcriptional activation by the peroxisomal proliferator-activated receptor γ (PPARγ ) ligand, 15-deoxy-Δ12,14-prostaglandin J2(15-d-PGJ2). Biochemistry 2004, 43, 2345-2352.
(67) Goswami, B.; Rajappa, M.; Sharma, M.; Sharma, A. Inflammation. Its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int. J. Gynecol. Cancer 2008, 18, 591-599.
(68) Macarthur, M.; Hold, G. L.; El-Omar, E. M. Inflammation and cancer. II. Role of chronic inflammation and cytokine polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G515-520.
(69) Tai, H. H. Prostaglandin catabolic enzymes as tumor suppressors. Cancer Metastasis Rev. 2011, 30, 409-417.
(70) Hata, A. N.; Breyer, R. M. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther. 2004, 103, 147–166.
(71) Lewis, R. A.; Soter, N. A.; Diamond, P. T.; Austen, K. F.; Oates, J. A.; Roberts, L. J. Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J. Immunol. 1982, 129, 1627-1631.
(72) Tanaka, K.; Ogawa, K.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Cutting Edge: Differential Production of Prostaglandin D2 by Human Helper T Cell Subsets. Immunol. 2000, 164, 2277-2280.
(73) Joo, M.; Sadikot, R. T. PGD synthase and PGD2 in immune response. Mediat. Inflamm. 2012, 2012, 6 503128.
(74) Ricciotti, E.; FitzGerald, G. A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol.2011, 31, 986-1000.
(75) Smith, W. L. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem. Sci. 2008, 33, 27-37.
(76) Ogorochi, T.; Narumiya, S.; Mizuno, N.; Yamashita, K.; Miyazaki, H.; Hayaishi, O. Regional distribution of prostaglandins D2, E2, and F2α and related enzymes in postmortem human brain. J. Neurochem. 1984, 43, 71-82.
(77) Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev. 2011, 15, 411-418.
(78) Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep regulation. Biochim. Biophys. Acta 1999, 1436, 606-615.
(79) Watanabe, T.; Narumiva, S.; Shimizu, T.; Havaishi, O. Characterization of the biosynthetic pathway of prostaglandin D2 in human platelet-rich plasma. J. Biol. Chem. 1982, 257, 14847-14853.
(80) Song, W.-L.; Stubbe, J.; Ricciotti, E.; Alamuddin, N.; Ibrahim, S.; Crichton, I.; Prempeh, M.; Lawson, J. A.; Wilensky, R. L.; Rasmussen, L. M.; Puré, E.; FitzGerald, G. A. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans. J. Clin. Invest. 2012, 122, 1459-1468.
(81) Zhang, X.; Young, H. A. PPAR and immune system-what do we know? Int. Immunopharmacol. 2002, 2, 1029-1044.
(82) Giles, H.; Leff, P. The biology and pharmacology of PGD2. Prostaglandins, 1988, 35, 277-300.
(83) Inoue, T.; Irikura, D.; Okazaki, N.; Kinugasa, S.; Matsumura, H.; Uodome, N.; Yamamoto, M.; Kumasaka, T.; Miyano, M.; Kai, Y.; Urade, Y. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nat. Struct. Biol. 2003, 10, 291-296.
(84) Scher J. U.; Pillinger M. H. 15d-PGJ2: The anti-inflammatory prostaglandin? Clin. Immunol. 2005, 114, 100-109.
(85) Spite, M.; Serhan, C. N. Novel lipid mediators promote resolution of acute inflammation impact of aspirin and statins. Circ. Res. 2010, 107, 1170-1184.
(86) Lee, H. N.; Na, H. K.; Surh, Y. J. Resolution of inflammation as a novel chemopreventive strategy. Semin. Immunopathol. 2013, 35,151-161.
(87) Kagitani-Shimono, K.; Mohri, I.; Oda, H.; Ozono, K.; Suzuki, K.; Urade, Y.; Taniike, M. Lipocalin-type prostaglandin D synthase (β-trace) is upregulated in the αB-crystallin-positive oligodendrocytes and astrocytes in the chronic multiple sclerosis. Neuropathol. Appl. Neurobiol. 2006, 32, 64-73.
(88) Saleem, S.; Shah, Z. A.; Urade, Y.; Dore, S. Lipocalin-prostaglandin D synthase is a critical beneficial factor in transient and permanent focal cerebral ischemia. Neuroscience 2009, 160, 248-254.
(89) Li, Z.; Conti, P. S. Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Delivery Rev. 2010, 62, 1031-1051.
(90) Garcia, E. V. Physical attributes, limitations, and future potential for PET and SPECT. J. Nuc.l Cardiol. 2012, 19(Suppl 1), S19–29.
(91) Vallabhajosula, S. Molecular Imaging: Radiopharmaceuticals for PET and SPECT.; Springer, 2009.
(92) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. A convenient catalyst for Aqueous and Protein Suzuki-Miyaura CrossCoupling. J. Am. Chem. Soc. 2009, 131, 16346-16347.
(93) Falck, J. R.;Sangras, B.; Capdevila, J. H. Preparation of N-tBoc L-glutathine dimethyl and di-tert-butyl ester: Versatile synthetic building blocks. Bioorg. Med. Chem. 2007, 15, 1062-1066.
(94) Van Lancker, F.; Adams, A.; De Kimpe, N. Chemical Modifications of Peptides and Their Impact on Food Properity. Chem. Rev. 2011, 111, 7876-7903.
(95) Anderson, M. E.; Powrie, F.; Puri, R. N.; Meister, A. Glutathione Monoethyl Ester: Preparation, Uptake by Tissues, and Conversion to Glutathione. Arch. Biochem. Biophys. 1985, 239, 538-548.
(96) 廖國延 合成胺基醣苷神經醯胺類似物以建構醯胺化分子庫之研究;國立清華大學碩士論文 2009
(97) 蘇元孝 便利的合成4-疊氮-1-丁基胺並用以建構篩選芬布芬及利尿酸之分子庫;國立清華大學碩士論文 2009
(98) Kocieński, P. J. Protecting groups.; Thieme, 2005.
(99) Chen, B.-C.; Skoumbourdis, A. P.; Guo, P.; Bednarz, M. S.; Kocy, O. R.; Sundeen, J. E.; Vite, G. D. A Facile Method for the Transformation of N-(tert-Butoxycarbonyl) r-Amino Acids to N-Unprotected r-Amino Methyl Esters. J. Org. Chem. 1999, 64, 9294-9296.
(100) Faust, M. R.; Höfner, G.; Pabel, J.; Wanner, K. T. Azetidine derivatives as novel g-aminobutyric acid uptake inhibitors: Synthesis, biological evaluation, and structureeactivity relationship. Eur. J. Med. Chem. 2010, 45, 2453-2466.
(101) Cline, D. J.; Redding, S. E.; Brohawn, S. G.; Psathas, J. N.; Schneider, J. P.; Thorpe, C. New Water-Soluble Phosphines as Reductants of Peptide and Protein Disulfide Bonds: Reactivity and Membrane Permeability. Biochemistry 2004, 43, 15195-15203.
(102) Humphrey, R. E.; Potter, J. Reduction of DiIsulfides with Tributylphosphine. L. Awl. Chem. 1965, 37, 164-165.
(103) Sweet, D. V., ED. Registry of Toxic Effects of Chemical Substances.; US Government Printing Office: Washington, 1988.
(104) Yasui, S.; Tojob, S.; Majima, T. Effects of substituents on aryl groups during the reaction of triarylphosphine radical cation and oxygen. Org. Biomol. Chem., 2006, 4, 2969-2973.
(105) Yin, C.; Huo, F.; Zhang, J.; Martı´nez-Ma´n˜ez, R.; Yang, Y.; Lv H.; Li, S. Thiol-addition reactions and their applications in thiol recognition. Chem. Soc. Rev., 2013, 42, 6032—6059.
(106) Pezzola, S.; Antonini, G.; Geroni, C.; Beria, I.; Colombo, M.; Broggini, M.; Mongelli, N.; Leboffe, L.; MacArthur, R.; Mozzi, A. F.; Federici, G.; Caccuri, A. M. Role of Glutathione Transferases in the Mechanism of Brostallicin Activation. Biochemistry, 2010, 49, 226–235.
(107) Pettigrew, N. E.; Brush, E. J.; Colman, R. F. 3-Methyleneoxindole: an affinity label of glutathione S-transferase pi which targets tryptophan 38. Biochemistry 2001, 40, 7549-7558.
(108) Streitwi, A.; Wilkins, C. L.; Kiehlman, E. Kinetic and Isotope Effects in Solvolyses of Ethyl Trifluoromathanesulfonate. J. Am. Chem. Soc. 1968, 90, 1598-1601.
(109) Cai, L.; Lu, S.; Pike, V. W. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem. 2008, 2853-2873.
(110) Wee, A. G. H.; Fan, G.-J.; Bayirinoba, H. M. Nonracemic Bicyclic Lactam Lactones via Regio- and cis-Diastereocontrolled C-H Insertion. Asymmetic Synthesis of (8S,8aS)-Octahydroindolizidin-8-ol and (1S, 8aS)- Octahydroindolizidin-1-ol. J. Org. Chem. 2009, 74, 8261-8271.
(111) Baptista, L.; Bauerfeldt, G. F.; Arbilla, G.; Silva, E. C. Theoretical study of fluorination reaction by diethylaminosulfur trifluoride (DAST). J. Mol. Struct. (THEOCHEM) 2006, 761, 73-81.
(112) Middleton, W. J. New Fluorinating Reagents. Dialkylaminosulfur Fluorides. J. Org. Chem. 1975, 40, 574.
(113) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups. Angew. Chem. Int. Ed. 2013, 52, 8214 – 8264.
(114) 俞鐘山 Organic Preparative Requirements for Investigations on the Preparaqtion of 18F- and 80Br-labelled Nucleoside Analogues Usefull Tools for Monitoring Gene Therapy. Ruprecht-Karls-Universität Heidelberg, 1999.
(115) Qu, W.; Zha, Z.; Ploessl, K.; Lieberman, B.P.; Zhu, L.; Wise, D.R.; Thompson, C.B.; Kung, H.F. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J. Am. Chem. Soc. 2011, 133, 1122-1133.
(116) Ashworth, I. W.; Cox, B. G.; Meyrick, B. Kinetics and Mechanism of N-Boc Cleavage: Evidence of a Second-Order Dependence upon Acid Concentration. J. Org. Chem. 2010, 75, 8117-8125.
(117) Kim, D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H.; Katzenellenbogen, J. A.; Chi, D. Y. Facile Nucleophilic Fluorination Reactions Using tert-Alcohols as a Reaction Medium: Significantly Enhanced Reactivity of Alkali Metal Fluorides and Improved Selectivity. J. Org. Chem. 2008, 73, 957-962.
(118) Kogias, E.; Osterberg, N.; Baumer, B.; Psarras, N.; Koentages, C.; Papazoglou, A.; Saavedra, J. E.; Keefer, L. K.; Weyerbrock, A. Growth-inhibitory and chemosensitizing effects of the glutathione- S-transferase-p-activated nitric oxide donor PABA/NO in malignant gliomas. Int. J. Cancer 2011, 130, 1184-1194.
(此全文限內部瀏覽)
電子全文檔
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *