|
[1] F. Y. Yang, W. M. Fu, R. S. Yang, H. C. Liou, K. H. Kang, and W. L. Lin, "Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption," Ultrasound Med Biol, vol. 33, pp. 1421-7, Sep 2007. [2] F. Wang, Y. Cheng, J. Mei, Y. Song, Y. Q. Yang, Y. Liu, et al., "Focused ultrasound microbubble destruction-mediated changes in blood-brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging," J Ultrasound Med, vol. 28, pp. 1501-9, Nov 2009. [3] F. Xie, M. D. Boska, J. Lof, M. G. Uberti, J. M. Tsutsui, and T. R. Porter, "Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model," Ultrasound Med Biol, vol. 34, pp. 2028-34, Dec 2008. [4] N. Vykhodtseva, N. McDannold, and K. Hynynen, "Progress and problems in the application of focused ultrasound for blood-brain barrier disruption," Ultrasonics, vol. 48, pp. 279-96, Aug 2008. [5] W. M. Pardridge, "Blood-brain barrier drug targeting: the future of brain drug development," Mol Interv, vol. 3, pp. 90-105, 51, Mar 2003. [6] M. Malakoutikhah, M. Teixido, and E. Giralt, "Shuttle-mediated drug delivery to the brain," Angew Chem Int Ed Engl, vol. 50, pp. 7998-8014, Aug 22 2011. [7] H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, et al., "Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment," Radiology, vol. 255, pp. 415-25, May 2010. [8] H. L. Liu, C. H. Pan, C. Y. Ting, and M. J. Hsiao, "Opening of the blood-brain barrier by low-frequency (28-kHz) ultrasound: a novel pinhole-assisted mechanical scanning device," Ultrasound Med Biol, vol. 36, pp. 325-35, Feb 2010. [9] F. Y. Yang, W. M. Fu, W. S. Chen, W. L. Yeh, and W. L. Lin, "Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain-barrier disruption," Ultrason Sonochem, vol. 15, pp. 636-43, Apr 2008. [10] N. McDannold, N. Vykhodtseva, and K. Hynynen, "Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index," Ultrasound Med Biol, vol. 34, pp. 834-40, May 2008. [11] S. Mitragotri, "Healing sound: the use of ultrasound in drug delivery and other therapeutic applications," Nat Rev Drug Discov, vol. 4, pp. 255-60, Mar 2005. [12] R. Kunstfeld, G. Wickenhauser, U. Michaelis, M. Teifel, W. Umek, K. Naujoks, et al., "Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a "humanized" SCID mouse model," J Invest Dermatol, vol. 120, pp. 476-82, Mar 2003. [13] L. H. Treat, N. McDannold, N. Vykhodtseva, Y. Zhang, K. Tam, and K. Hynynen, "Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound," Int J Cancer, vol. 121, pp. 901-7, Aug 15 2007. [14] E. L. Yuh, S. G. Shulman, S. A. Mehta, J. Xie, L. Chen, V. Frenkel, et al., "Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model," Radiology, vol. 234, pp. 431-7, Feb 2005. [15] S. Tinkov, G. Winter, C. Coester, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization," J Control Release, vol. 143, pp. 143-50, Apr 2 2010. [16] W. Xing, W. Z. Gang, Z. Yong, Z. Y. Yi, X. C. Shan, and R. H. Tao, "Treatment of xenografted ovarian carcinoma using paclitaxel-loaded ultrasound microbubbles," Acad Radiol, vol. 15, pp. 1574-9, Dec 2008. [17] J. Kang, X. Wu, Z. Wang, H. Ran, C. Xu, J. Wu, et al., "Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors," J Ultrasound Med, vol. 29, pp. 61-70, Jan 2010. [18] P. J. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound Med Biol, vol. 26, pp. 965-75, Jul 2000. [19] J. W. Barnard, W. J. Fry, F. J. Fry, and R. F. Krumins, "Effects of high intensity ultrasound on the central nervous system of the cat," J Comp Neurol, vol. 103, pp. 459-84, Dec 1955. [20] J. J. Choi, M. Pernot, S. A. Small, and E. E. Konofagou, "Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice," Ultrasound Med Biol, vol. 33, pp. 95-104, Jan 2007. [21] H. L. Liu, Y. Y. Wai, P. H. Hsu, L. A. Lyu, J. S. Wu, C. R. Shen, et al., "In vivo assessment of macrophage CNS infiltration during disruption of the blood-brain barrier with focused ultrasound: a magnetic resonance imaging study," J Cereb Blood Flow Metab, vol. 30, p. 674, Mar 2010. [22] P. Dayton, A. Klibanov, G. Brandenburger, and K. Ferrara, "Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles," Ultrasound Med Biol, vol. 25, pp. 1195-201, Oct 1999. [23] S. Qin and K. W. Ferrara, "Acoustic response of compliable microvessels containing ultrasound contrast agents," Phys Med Biol, vol. 51, pp. 5065-88, Oct 21 2006. [24] J. Collis, R. Manasseh, P. Liovic, P. Tho, A. Ooi, K. Petkovic-Duran, et al., "Cavitation microstreaming and stress fields created by microbubbles," Ultrasonics, vol. 50, pp. 273-9, Feb 2010. [25] W. Wiedemair, Z. Tukovic, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, "On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier," Phys Med Biol, vol. 57, pp. 1019-45, Feb 21 2012. [26] S. B. Raymond, J. Skoch, K. Hynynen, and B. J. Bacskai, "Multiphoton imaging of ultrasound/Optison mediated cerebrovascular effects in vivo," J Cereb Blood Flow Metab, vol. 27, pp. 393-403, Feb 2007. [27] H. Chen, W. Kreider, A. A. Brayman, M. R. Bailey, and T. J. Matula, "Blood vessel deformations on microsecond time scales by ultrasonic cavitation," Phys Rev Lett, vol. 106, p. 034301, Jan 21 2011. [28] E. E. Cho, J. Drazic, M. Ganguly, B. Stefanovic, and K. Hynynen, "Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening," J Cereb Blood Flow Metab, vol. 31, pp. 1852-62, Sep 2011. [29] Y. S. Tung, F. Vlachos, J. A. Feshitan, M. A. Borden, and E. E. Konofagou, "The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice," J Acoust Soc Am, vol. 130, pp. 3059-67, Nov 2011. [30] N. McDannold, N. Vykhodtseva, and K. Hynynen, "Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption," Ultrasound Med Biol, vol. 34, pp. 930-7, Jun 2008. [31] D. E. Goertz, C. Wright, and K. Hynynen, "Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound," Ultrasound Med Biol, vol. 36, pp. 916-24, Jun 2010. [32] J. J. Choi, K. Selert, Z. Gao, G. Samiotaki, B. Baseri, and E. E. Konofagou, "Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies," J Cereb Blood Flow Metab, vol. 31, pp. 725-37, Feb 2011. [33] F. Vlachos, Y. S. Tung, and E. Konofagou, "Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI," Magn Reson Med, vol. 66, pp. 821-30, Sep 2011. [34] J. Park, Y. Zhang, N. Vykhodtseva, F. A. Jolesz, and N. J. McDannold, "The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound," J Control Release, vol. 162, pp. 134-42, Aug 20 2012. [35] B. Baseri, J. J. Choi, Y. S. Tung, and E. E. Konofagou, "Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study," Ultrasound Med Biol, vol. 36, pp. 1445-59, Sep 2010. [36] J. J. Choi, K. Selert, F. Vlachos, A. Wong, and E. E. Konofagou, "Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles," Proc Natl Acad Sci U S A, vol. 108, pp. 16539-44, Oct 4 2011. [37] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, "Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits," Radiology, vol. 220, pp. 640-6, Sep 2001. [38] K. J. Lin, H. L. Liu, P. H. Hsu, Y. H. Chung, W. C. Huang, J. C. Chen, et al., "Quantitative micro-SPECT/CT for detecting focused ultrasound-induced blood-brain barrier opening in the rat," Nucl Med Biol, vol. 36, pp. 853-61, Oct 2009. [39] H. L. Liu, P. H. Hsu, P. C. Chu, Y. Y. Wai, J. C. Chen, C. R. Shen, et al., "Magnetic resonance imaging enhanced by superparamagnetic iron oxide particles: usefulness for distinguishing between focused ultrasound-induced blood-brain barrier disruption and brain hemorrhage," J Magn Reson Imaging, vol. 29, pp. 31-8, Jan 2009. [40] H. L. Liu, Y. Y. Wai, W. S. Chen, J. C. Chen, P. H. Hsu, X. Y. Wu, et al., "Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging," Ultrasound Med Biol, vol. 34, pp. 598-606, Apr 2008. [41] J. Folkman, "Tumor angiogenesis," Adv Cancer Res, vol. 43, pp. 175-203, 1985. [42] K. Wei, A. R. Jayaweera, S. Firoozan, A. Linka, D. M. Skyba, and S. Kaul, "Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion," Circulation, vol. 97, pp. 473-83, Feb 10 1998. [43] S. J. Rim, H. Leong-Poi, J. R. Lindner, D. Couture, D. Ellegala, H. Mason, et al., "Quantification of cerebral perfusion with "Real-Time" contrast-enhanced ultrasound," Circulation, vol. 104, pp. 2582-7, Nov 20 2001. [44] K. Wei, M. Ragosta, J. Thorpe, M. Coggins, S. Moos, and S. Kaul, "Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography," Circulation, vol. 103, pp. 2560-5, May 29 2001. [45] J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, et al., "US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice," Radiology, vol. 246, pp. 508-18, Feb 2008. [46] K. Kalantarinia, J. T. Belcik, J. T. Patrie, and K. Wei, "Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound," Am J Physiol Renal Physiol, vol. 297, pp. F1129-34, Oct 2009. [47] R. Kern, A. Diels, J. Pettenpohl, M. Kablau, J. Brade, M. G. Hennerici, et al., "Real-time ultrasound brain perfusion imaging with analysis of microbubble replenishment in acute MCA stroke," J Cereb Blood Flow Metab, vol. 31, pp. 1716-24, Aug 2011. [48] J. J. Rychak, J. Graba, A. M. Cheung, B. S. Mystry, J. R. Lindner, R. S. Kerbel, et al., "Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis," Mol Imaging, vol. 6, pp. 289-96, Sep-Oct 2007. [49] C. K. Yeh, S. Y. Lu, and Y. S. Chen, "Microcirculation volumetric flow assessment using high-resolution, contrast-assisted images," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, pp. 74-83, Jan 2008. [50] J. M. Hudson, R. Karshafian, and P. N. Burns, "Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles," Ultrasound Med Biol, vol. 35, pp. 2007-20, Dec 2009. [51] J. M. Hudson, R. Williams, B. Lloyd, M. Atri, T. K. Kim, G. Bjarnason, et al., "Improved flow measurement using microbubble contrast agents and disruption-replenishment: clinical application to tumour monitoring," Ultrasound Med Biol, vol. 37, pp. 1210-21, Aug 2011. [52] J. M. Hudson, K. Leung, and P. N. Burns, "The lognormal perfusion model for disruption replenishment measurements of blood flow: in vivo validation," Ultrasound Med Biol, vol. 37, pp. 1571-8, Oct 2011. [53] S. T. Kang and C. K. Yeh, "A maleimide-based in-vitro model for ultrasound targeted imaging," Ultrason Sonochem, vol. 18, pp. 327-33, Jan 2011. [54] W. L. Nyborg, "Biological effects of ultrasound: development of safety guidelines. Part II: general review," Ultrasound Med Biol, vol. 27, pp. 301-33, Mar 2001. [55] Y. S. Tung, J. J. Choi, B. Baseri, and E. E. Konofagou, "Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles," Ultrasound Med Biol, vol. 36, pp. 840-52, May 2010. [56] C. K. Yeh and S. Y. Su, "Effects of acoustic insonation parameters on ultrasound contrast agent destruction," Ultrasound Med Biol, vol. 34, pp. 1281-91, Aug 2008. [57] C. H. Fan, H. L. Liu, C. Y. Huang, Y. J. Ma, T. C. Yen, and C. K. Yeh, "Detection of intracerebral hemorrhage and transient blood-supply shortage in focused-ultrasound-induced blood-brain barrier disruption by ultrasound imaging," Ultrasound Med Biol, vol. 38, pp. 1372-82, Aug 2012. [58] M. Ichihara, K. Sasaki, S. Umemura, M. Kushima, and T. Okai, "Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion," Ultrasound Med Biol, vol. 33, pp. 452-9, Mar 2007. [59] M. E. van Raaij, L. Lindvere, A. Dorr, J. He, B. Sahota, F. S. Foster, et al., "Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound," Neuroimage, vol. 63, pp. 1030-7, Nov 15 2012. [60] F. Y. Yang, C. C. Chen, S. C. Horng, W. H. Chiu, and C. F. Yeh, "Microbubble-enhanced functional changes in arteries induced by pulsed high-intensity focused ultrasound exposure," Medical Engineering & Physics, vol. 34, pp. 313-317, Apr 2012. [61] W. M. Bayliss, "On the local reactions of the arterial wall to changes of internal pressure," J Physiol, vol. 28, pp. 220-31, May 28 1902. [62] N. Hosseinkhah and K. Hynynen, "A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels," Phys Med Biol, vol. 57, pp. 785-808, Feb 7 2012. [63] H. Girouard, A. D. Bonev, R. M. Hannah, A. Meredith, R. W. Aldrich, and M. T. Nelson, "Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction," Proc Natl Acad Sci U S A, vol. 107, pp. 3811-6, Feb 23 2010. [64] J. Park, Z. Fan, R. E. Kumon, M. E. El-Sayed, and C. X. Deng, "Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation," Ultrasound Med Biol, vol. 36, pp. 1176-87, Jul 2010. [65] R. E. Kumon, M. Aehle, D. Sabens, P. Parikh, Y. W. Han, D. Kourennyi, et al., "Spatiotemporal effects of sonoporation measured by real-time calcium imaging," Ultrasound Med Biol, vol. 35, pp. 494-506, Mar 2009. [66] W. J. Tyler, Y. Tufail, M. Finsterwald, M. L. Tauchmann, E. J. Olson, and C. Majestic, "Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound," PLoS One, vol. 3, p. e3511, 2008. [67] J. H. Hoger, V. I. Ilyin, S. Forsyth, and A. Hoger, "Shear stress regulates the endothelial Kir2.1 ion channel," Proc Natl Acad Sci U S A, vol. 99, pp. 7780-5, May 28 2002. [68] D. J. Adams and M. A. Hill, "Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells," J Cardiovasc Electrophysiol, vol. 15, pp. 598-610, May 2004. [69] J. Hu, X. Yuan, M. K. Ko, D. Yin, M. R. Sacapano, X. Wang, et al., "Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model," Mol Cancer, vol. 6, p. 22, 2007. [70] L. Cucullo, M. Hossain, V. Puvenna, N. Marchi, and D. Janigro, "The role of shear stress in Blood-Brain Barrier endothelial physiology," BMC Neurosci, vol. 12, p. 40, 2011. [71] E. VanBavel, "Effects of shear stress on endothelial cells: possible relevance for ultrasound applications," Prog Biophys Mol Biol, vol. 93, pp. 374-83, Jan-Apr 2007. [72] C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, et al., "Pronounced hypoperfusion during spreading depression in mouse cortex," J Cereb Blood Flow Metab, vol. 24, pp. 1172-82, Oct 2004. [73] Y. Gursoy-Ozdemir, J. Qiu, N. Matsuoka, H. Bolay, D. Bermpohl, H. Jin, et al., "Cortical spreading depression activates and upregulates MMP-9," J Clin Invest, vol. 113, pp. 1447-55, May 2004.
|