帳號:guest(18.118.120.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林瑞恩
作者(外文):Lin, Jui-En
論文名稱(中文):製備層狀MnO/C奈米複合材料與鋰離子電池負極材料之應用
論文名稱(外文):Fabrication of Layered MnO/C Nanosheets as Anode Materials for Li-ion Battery
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):李志浩
陳振興
口試委員(外文):Chih-Hao Lee
Jenn-Shing Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:100012530
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:鋰離子電池碳包覆氧化錳負極材料
外文關鍵詞:MnOanodelithium ion batterycompositecarbon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:92
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
MnO具有環境友善、高理論容量(756 mAh/g)及較低的電位延遲等特點,所以被視為極具發展性的鋰離子電池負極材料。但MnO在初次放電過程有會有極大的不可逆反應產生,包含固體電解質膜的形成或是顆粒的聚集等現象,因此大幅降低鋰離子電池之效率。而使用碳材包覆於MnO表面不僅可減少固體電解質膜得形成且避免顆粒聚集,同時也可提升MnO電化學性能,在適當調控下,表面披覆的碳可以分散各MnO顆粒,並具有減緩體積變化以及作為電子與離子傳輸通道的功能,因此MnO/C複合材料為近年來研究的主軸之一。
本研究是利用油酸錳作為碳與錳元素之前驅物,配合低成本之硫酸鈉作為模板,以鍛燒方式形成MnO/C二維平面複合材料。同時探討鍛燒氣氛、鍛燒溫度與時間對其形貌之影響,最後進行材料於鋰離子電池負極應用效能之評估。鍛燒氣氛方面,發現選用氮氣時可以得到高純度之MnO晶相。鍛燒溫度方面,隨溫度之提高可提升MnO之結晶性,但碳含量卻下降,由500 C的12.9 wt%,降至 800 C的0.9 wt%。碳含量下降會使複合物之形貌由二維層狀結構轉變成三維堆疊結構,造成反應面積的下降,在考量MnO的結晶性與碳含量之情況下,得到最佳之鍛燒溫度為600 C。就鍛燒時間而言,較長的鍛燒時間會使複合物中碳含量緩慢下降,其下降趨勢和溫度相比較不明顯,而經鍛燒3小時可以得到最佳化的參數。將各材料組成半電池並經由充放電儀測試,其結果發現複合物中碳含量對於電化學效果呈現火山型的結果,碳含量高於10 wt%時會造成整體電容值的下降、過多的電解質分解和較厚的固體電解質膜。當碳含量小於10 wt%時,MnO顆粒間缺乏有效的阻隔,經多次循環後會因顆粒聚集而使電容值嚴重衰退。同時考量MnO顆粒與碳含量因素下,本實驗中最佳化之碳含量為11.9 wt%,在100 mA/g掃速下,電容值可達到500 mAh/g,並維持庫倫效率達97%以上;當掃速提高至1000 mA/g時,其放電電容值約130 mAh/g,庫倫效率維持在96%以上。本研究外層包覆的碳材受限於氧化錳長晶的條件,所以其導電性還有加強的空間,將來可以使用氮參雜或其他方式來提升奈米材料整體性能。
MnO is an attractive anode material for Lithium ion battery(LIB) because of the low conversion potential, low voltage hysteresis (< 0.8 V), low cost, high capacity(756 mAh/g), environmental friendliness, and the high abundance of Mn. However, MnO will have a large amount of irreversible reaction , including formation of solid electrolyte interphase and aggregation of particles during the initial discharge process, leading to the significant reduction of the performance of LIBs. The use of carbon coating on MnO nanoparticles can not only reduces the formation of solid electrolyte interface and avoids particle aggregation, but can also improve the electrochemical performance of MnO. Under appropriate control, surface coating carbon can disperse MnO particles well, limit the volume change of particles and act as a channel for electrons and ions transportation. In summary, MnO /C composite material gets a lot of attention in recent years.
In this study, we use manganese oleate as a precursor for both carbon and manganese element, mixing with low-cost sodium sulfate template. After calcination and washing process, the final product is two-dimensional MnO/ C composite. The influence of calcination atmosphere, calcination temperature and holding time on the morphology of composites was examined, and then lithium ion battery anode material. Calcined under nitrogen atmosphere can get high purity MnO. Higher temperature can get better crystallinity of MnO, but the carbon content has dropped. The carbon content is decrease from 12.9 to 0.9 wt% when temperature increased from 500 C to 800 C. The morphology of the composites changed from the layered structures into three-dimensional stacked structures, resulting in the decrease in reaction area, as the carbon amount decreased. In the presence of MnO crystalline and the carbon content, the optimum calcination temperature is 600 C. The long calcination time decreased carbon content slowly. Comparing to temperature effect, the carbon loss tendency in time effect is not obvious, but calcination for 3h can get the most suitable carbon thinckness. Each material will test in the form of half-cell by charging and discharging test and cyclic voltammetry. The carbon content affecting the electrochemical performance show a volcano type result. When the carbon content is higher than 10 wt%, it will show the capacity decrease, excessive electrolyte decomposition and thicker SEI film. In contrast, less carbon content causing the less barriers between MnO particles and fast capacitance decrease after cycling. Considering the carbon content and MnO particles simultaneously, the optimized carbon content in this study is 11.9 wt%. The discharge capacitance can be up to about 500 mAh/g at 100 mA/g scan rate, and the coulomb efficiency is maintained more than 97%; when the scan rate increased to 1000 mA/g, the discharge capacitance value is about 130 mAh/g, coulomb efficiency is maintained above 96%. The manganese oxide crystal growth will limit the improvement of conductivity for carbon content under calcination process.
目 錄

誌 謝 i
摘 要 iii
Abstract v
目 錄 vii
表目錄 ix
圖目錄 x
第一章 緒 論 1
1.1前言 1
1.2研究動機 1
1.3 研究目的 2
第二章 文獻回顧 3
2.1鋰離子電池的工作原理 3
2.2 鋰離子電池之組成 4
2.2.1正極材料 4
2.2.2負極材料 8
2.2.3隔離膜(Separator) 13
2.2.4電解液系統(Electrolyte System) 13
2.3氧化錳(MnOx)-碳材之複合材料 17
2.3.1 MnOx/C複合材料之合成 17
2.3.1 MnOx/C複合材料之鋰離子負極材料應用 21
第三章 實驗材料與方法 25
3.1 試劑與材料 25
3.2 實驗方法 26
3.2.1 實驗架構 26
3.2.2 油酸錳之合成 27
3.2.3 MnO/C奈米複合材料之合成 28
3.2.4鋰離子電池陽極材料之應用 30
3-3 特性鑑定 31
3.3.1 X光粉末繞射儀(X-ray Diffractometer, XRD) 31
3.3.2穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 32
3.3.3 比表面積分析儀(BET Surface Area analyzer,BET) 32
3.3.4 熱重分析儀(Thermogravimetric Analyzer, TGA) 33
3.3.5 拉曼光譜儀(Raman Spectroscopy) 33
3.3.6 循環伏安法(CV) 34
3.3.7 定電流充放電測試 34
3.3.8 電子能譜儀(X-ray Photoclectron Spectrometer, XPS) 35
3.3.9元素分析儀(Elemental analysis, EA) 35
第四章 結果與討論 36
4.1油酸錳之鑑定 36
4.2 MnO/C 奈米複合材料製備技術 37
4.2.1 鍛燒氣氛對奈米複合材料形貌之影響 38
4.2.2 油酸錳與硫酸鈉混合方式對奈米複合材料之影響 40
4.2.3鍛燒溫度對奈米複合材料之影響 43
4.2.4 鍛燒時間對奈米複合材料形貌之影響 53
4.3 MnO/C 奈米複合材料之拉曼鑑定 59
4.4 MnO/C 奈米複合材料應用於鋰離子電池負極材料 61
4.4.1 MnO/C 奈米複合材料中不同碳含量對於電化學表現之影響 62
4.4.2不同鍛燒溫度之MnO/C 奈米複合材料之電化學表現 71
第五章 結論 78
5.1 MnO/C奈米複合材料之合成 78
5.2 鋰離子電池負極材料之應用 78

參考文獻
1. Inaba, M., Up-to-date development of lithium-ion batteries in Japan. IEEE Electr. Insul. Mag. 2001, 17 (6), 6-20.
2. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Eenrg. Environ. Sci. 2011, 4 (8), 2682-2699.
3. Park, S.; Savvides, A.; Srivastava, M. B.; Acm, Battery capacity measurement and analysis using lithium coin cell battery. Assoc. Computing Machinery, 2001, 382-387.
4. Linden, D., Handbook of batteries and fuel cells, McGraw-Hill Inc. 1984, 11, 1-2
5. Li, X.; Xiong, S.;Li., J.; Liang., X. ; Wang, J.;Bai, J.;Qian, Y, MnO@Carbon Core–Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries Chem. Eur. J. 2013, 19, 34, 11310-11319
6. Wang, Z. H.; Yuan,L. X.; Shao,Q. G.; Huang, F.;Huang, Y. H., Mn3O4 nanocrystals anchored on multi-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Electron. Mater. Lett. 2012, 80, 110-113
7. Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M., Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6 (3), 2051-2058
8. Xu, S. D.; Zhu, Y. B.; Zhuang, Q. C.; Wu, C., Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries. Mater. Res. Bull. 2013, 48 (9), 3479-3484.
9. Wang, T.; Peng, Z.; Wang, Y.; Tang, J.; Zheng, G.,MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci. Rep. 2013, 3, 2693-2701.
10. Cui, Z.; Guo, X.; Li, H., High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J. Power Sources 2013, 244, 731-735.
11. Pati, S. P.; Das, D., Interfacial magnetic phenomena of mechanosynthesized Fe nanoparticles in MnO matrix. Ceram. Int. 2014, 40 (7), 10343-10349.
12. Yoshimura, M., Soft solution processing: concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing. J. Mater. Sci. 2006, 41 (5), 1299-1306.
13. 蔡宜蓁,修飾Pechini法合成LiNi0.8Co0.2O2電極材料之晶粒大小效應研究,國立高雄應用科技大學化學工程系碩士論文,2008。
14. Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T., Nanostructured electrode materials for electrochemical energy storage and conversion. Eenrg. Environ. Sci. 2008, 1 (6), 621.
15. 游子弘,以微波-離子交換法快速合成鋰電池LiNi1/2Mn1/2O2陰極材料與其電池性能之研究,國立臺灣科技大學化學工程系碩士論文,2006.
16. Kasprzak, K., Nickel carcinogenesis. Mutat. Res-Fund. Mol. M. 2003, 533 (1-2), 67-97.
17. Jang, Y. I.; B. H.; Chiang, Y. M.; Sadoway, D. S., Stabilization of LiMnO2 in the α-NaFeO2 structure type by LiAlO2 addition. Electrochem. Solid. ST 1998, 1 (1), 13-16.
18. Yang, C.; Huang, J.; Huang, L.; Wang, G., Electrochemical performance of LiCo1/3Mn1/3Ni1/3O2 hollow spheres as cathode material for lithium ion batteries. 2013, 226, 219-222;
19. D. Aurbach, M. D. L., K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L.; Heider, R. O., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. J. Power Sources 1999, 81, 472-479.
20. Padhi, A. K. ; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144 (4), 1188-1194.
21. Morgan, D.; Van der Ven, A.; Ceder, G., Li Conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid S. T. 2004, 7 (2), 30.
22. Islam, M. S.; Fisher, C. A., Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43 (1), 185-204.
23. Longo, R. C.; Kong, F. T.; Kc, S.; Park, M. S.; Yoon, J.; Yeon, D. H.; Park, J. H.; Doo, S. G.; Cho, K., Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations. Phys. Chem. Chem. Phys. 2014, 16 (23), 11218-11227.
24. 黃盈慈,電解沉積摻雜Li於NiO薄膜鋰離子電池負極材料特性之研究,國立中興大學材料工程學研究所碩士論文,2005。
25. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V., Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113 (7), 5364-457.
26. Schollhorn, R. S.; Kuhlmann, R.; BESENHARD, J., Topotactic redox reactions and ion exchange of layered MoO3 bronzes. Mater. Res. Bull. 1976, 11 (1), 83-90.
27. Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J., High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18 (11), 1421-1426.
28. Sasidharan, M.; Gunawardhana, N.; Yoshio, M.; Nakashima, K., Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries. Mater. Res. Bull. 2012, 47 (9), 2161-2164.
29. Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M. L.; Lv, D.; Wang, D., Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries. Mater. Sci. Eng., B 2014, 185, 7-12.
30. Niu, C.; Meng, J.; Han, C.; Zhao, K.; Yan, M.; Mai, L., VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14 (5), 2873-8.
31. Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J., Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134 (18), 7874-9.
32. Huggins, R. A., Lithium alloy negative electrodes. J. Power Sources 1999, 81, 13-19
33. Zhang, W.-J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (3), 877-885;
34. Kumar, T. P.; Ramesh, R.; Lin, Y. Y.; Fey, G. T. K., Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem.Commun. 2004, 6 (6), 520-525.
35. Xu, Y.; Liu, Q.; Zhu, Y.; Liu, Y.; Langrock, A.; Zachariah, M. R.; Wang, C., Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13 (2), 470-4.
36. He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J., Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7 (5), 4459-4469.
37. Li, Y.; Zhao, J.; Dan, Y.; Ma, D.; Zhao, Y.; Hou, S.; Lin, H.; Wang, Z., Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem. Eng. J. 2011, 166 (1), 428-434.
38. Zhou, G.; Wang, D. W.; Yin, L. C., Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6(4), 3214-3223
39. Park, J. C.; Kim, J.; Kwon, H.; Song, H., Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO Hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 2009, 21 (7), 803-807.
40. Bergmann, M. E. H.; Koparal, A. S., Studies on electrochemical disinfectant production using anodes containing RuO2. J. Appl. Electrochem. 2005, 35 (12), 1321-1329.
41. Cabana, J.; Monconduit, L.; Larcher, D.; Palacín1, R.M., Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22 (35), 170-192; 42. Rahman, M. M.; Chou, S.L.; Zhong, C.; Wang, J. Z.; Wexler, D.; Liu, H. K., Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics 2010, 180 (40), 1646-1651.
43. Jian, G.; Xu, Y.; Lai, L. C.; Wang, C.; Zachariah, M. R., Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity. J. Mater. Chem. A 2014, 2 (13), 4627-4632.
44. Pan, Q. M.; Qin, L. M.; Liu, J.; Wang, H. B., Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries. Electrochim. Acta 2010, 55 (20), 5780-5785.
45. Huang, X. H.; Tu, J. P.; Zhang, B.; Zhang, C. Q.; Li, Y.; Yuan, Y. F.; Wu, H. M., Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium ion batteries. J. Power Sources 2006, 161 (1), 541-544.
46. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S., The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochem.Commun. 2006, 8 (2), 284-288.
47. Varghese, B.; Reddy, M. V.; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Rao, G. V. S.; Chowdari, B. V. R.; Wee, A. T. S.; Lim, C. T.; Sow, C. H., Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 2008, 20 (10), 3360-3367.
48. Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Xiang, J. Y., Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochem.Commun. 2007, 9 (5), 1180-1184.
49. Li, X.; Dhanabalan, A.; Bechtold, K.; Wang, C., Binder-free porous core-shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochem.Commun. 2010, 12 (9), 1222-1225.
50. Zhong, C.; Wang, J. Z.; Chou, S. L.; Konstantinov, K.; Rahman, M.; Liu, H.-K., Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. J. Appl. Electrochem. 2010, 40 (7), 1415-1419.
51. Liu, L.; Li, Y.; Yuan, S.; Ge, M.; Ren, M.; Sun, C.; Zhou, Z., Nanosheet-Based NiO Microspheres: Controlled Solvothermal Synthesis and Lithium Storage Performances. J. Phys. Chem. C 2010, 114 (1), 251-255.
52. Needham, S. A.; Wang, G. X.; Liu, H. K., Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159 (1), 254-257.
53. Huang, X. H.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Xiang, J. Y.; Zhang, L.; Zhou, Y., Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries. J. Power Sources 2009, 188 (2), 588-591.
54. Qiao, H.; Wu, N.; Huang, F.; Cai, Y.; Wei, Q., Solvothermal synthesis of NiO/C hybrid microspheres as Li-intercalation electrode material. Mater. Lett. 2010, 64 (9), 1022-1024.
55. Huang, X. H.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Xiang, J. Y., Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem.Commun. 2008, 10 (9), 1288-1290.
56. Huang, X. H.; Tu, J. P.; Zeng, Z. Y.; Xiang, J. Y.; Zhao, X. B., Nickel foam-supported porous NiO/Ag film electrode for lithium-ion batteries. J. Electrochem. Soc. 2008, 155 (6), 438-441.
57. Huang, X. H.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Xiang, J. Y.; Zhang, L., Porous NiO/poly(3,4-ethylenedioxythiophene) films as anode materials for lithium ion batteries. J. Power Sources 2010, 195 (4), 1207-1210.
58. Liu, H.; Wang, G.; Liu, J.; Qiao, S.; Ahn, H., Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21 (9), 3046-3052.
59. Ma, J.; Yang, J.; Jiao, L.; Mao, Y.; Wang, T.; Duan, X.; Lian, J.; Zheng, W., NiO nanomaterials: controlled fabrication, formation mechanism and the application in lithium-ion battery. Cryst. Eng. Comm. 2012, 14 (2), 453-459.
60. Wang, X. H.; Li, X. W.; Sun, X. L.; Li, F.; Liu, Q. M.; Wang, Q.; He, D. Y., Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21 (11), 3571-3573.
61. Cao, F.; Zhang, F.; Deng, R.; Hu, W.; Liu, D.; Song, S.; Zhang, H., Surfactant-free preparation of NiO nanoflowers and their lithium storage properties. Cryst. Eng. Comm. 2011, 13 (15), 4903-4908.
62. Huang, X. H.; Yuan, Y. F.; Wang, Z.; Zhang, S. Y.; Zhou, F., Electrochemical properties of NiO/Co-P nanocomposite as anode materials for lithium ion batteries. J. Alloys Compd. 2011, 509 (7), 3425-3429.
63. Zhong, J.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Xiang, J. Y.; Zhang, J.; Tu, J. P., Self-assembled sandwich-like NiO film and its application for Li-ion batteries. J. Alloys Compd. 2011, 509 (9), 3889-3893.
64. Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu, C. D.; Wang, X. L., Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J. Power Sources 2011, 196 (15), 6388-6393.
65. Li, X.; Dhanabalan, A.; Wang, C., Enhanced electrochemical performance of porous NiO-Ni nanocomposite anode for lithium ion batteries. J. Power Sources 2011, 196 (22), 9625-9630.
66. Xu, C.; Sun, J.; Gao, L., Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources 2011, 196 (11), 5138-5142.
67. Zhu, X. J.; Hu, J.; Dai, H. L.; Ding, L.; Jiang, L., Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery. Electrochim. Acta 2012, 64, 23-28.
68. Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.; Dupont, L.; Poizot, P.; Tarascon, J. M., Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 2001, 148 (4), 285-292.
69. Lee, Y. H.; Leu, I. C.; Liao, C. L.; Chang, S. T.; Wu, M. T.; Yen, J. H.; Fung, K. Z., Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries. Electrochem. Solid-State Lett. 2006, 9 (4), 207-210.
70. Fu, L. J.; Gao, J.; Zhang, T.; Cao, Q.; Yang, L. C.; Wu, Y. P.; Holze, R.; Wu, H. Q., Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. J. Power Sources 2007, 174 (2), 1197-1200.
71. Wang, H.; Pan, Q.; Zhao, J.; Chen, W., Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries. J. Alloys Compd. 2009, 476 (1-2), 408-413.
72. Oh, S. W.; Bang, H. J.; Bae, Y. C.; Sun, Y.-K., Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J. Power Sources 2007, 173 (1), 502-509.
73. Ke, F. S.; Huang, L.; Wei, G. Z.; Xue, L. J.; Li, J. T.; Zhang, B.; Chen, S. R.; Fan, X. Y.; Sun, S. G., One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim. Acta 2009, 54 (24), 5825-5829.
74. Xiang, J. Y.; Tu, J. P.; Zhang, J.; Zhong, J.; Zhang, D.; Cheng, J. P., Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem.Commun. 2010, 12 (8), 1103-1107.
75. Xiang, J. Y.; Tu, J. P.; Zhang, L.; Zhou, Y.; Wang, X. L.; Shi, S. J., Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources 2010, 195 (1), 313-319.
76. Chen, L. B.; Lu, N.; Xu, C. M.; Yu, H. C.; Wang, T. H., Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta 2009, 54 (17), 4198-4201.
77. Reddy, G. K.;Boolchand, P.; Smirniotis, P. G. Unexpected behavior of copper in modified ferrites during high temperature WGS reaction-aspects of Fe3+ ↔ Fe2+ redox chemistry from mossbauer and XPS studies. J. Phys. Chem. C 2012, 116(20), 11019-11031
78. 李孟倫,快速充電鋰離子二次電池負極複合碳材之研究,國立清華大學材料科學工程學系碩士論文,2009.
79. Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N., Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5 (1), 72-88.
80. Mette, K.; Bergmann, A.; Tessonnier, J.-P.; Haevecker, M.; Yao, L.; Ressler, T.; Schloegl, R.; Strasser, P.; Behrens, M., Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. Chemcatchem 2012, 4 (6), 851-862.
81. Xia, H.; Wang, Y.; Lai, M. O.; Lin, J. Y.; Lu, L., Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. Cryst. Growth Des. 2011, 11 (7), 3306-3306.
82. Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H., Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23 (19), 2436-2444.
83. Zhang, K. J.; Han, P. X.; Gu, L.; Zhang, L. X.; Liu, Z. H.; Kong, Q. S.; Zhang, C. J.; Dong, S. M.; Zhang, Z. Y.; Yao, J. H.; Xu, H. X.; Cui, G. L.; Chen, L. Q., Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. Acs Applied Materials & Interfaces 2012, 4 (2), 658-664.
84. Liu, X.; Li, H.; Li, D.; Ishida, M.; Zhou, H., PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J. Power Sources 2013, 243, 374-380.
85. Qiu, D.; Ma, L.; Zheng, M.; Lin, Z.; Zhao, B.; Wen, Z.; Hu, Z.; Pu, L.; Shi, Y., MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries. Mater. Lett. 2012, 84, 9-12.
86. Lee, S. M.; Choi, S. H.; Lee, J.-K.; Kang, Y. C., Electrochemical properties of graphene-MnO composite and hollow-structured MnO powders prepared by a simple one-pot spray pyrolysis process. Electrochim. Acta 2014, 132, 441-447.
87. Zang, J.; Qian, H.; Wei, Z.; Cao, Y.; Zheng, M.; Dong, Q., Reduced graphene oxide supported MnO nanoparticles with excellent lithium storage performance. Electrochim. Acta 2014, 118, 112-117.
88. Mai, Y. J.; Zhang, D.; Qiao, Y. Q.; Gu, C. D.; Wang, X. L.; Tu, J. P., MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J. Power Sources 2012, 216, 201-207.
89. Zhang, X.; Xing, Z.; Wang, L.; Zhu, Y.; Li, Q.; Liang, J.; Yu, Y.; Huang, T.; Tang, K.; Qian, Y.; Shen, X., Synthesis of MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22 (34), 17864-17869.
90. Sun, B.; Chen, Z. X.; Kim, H. S.; Ahn, H.; Wang, G. X., MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 2011, 196 (6), 3346-3349.
91. Li, S. R.; Sun, Y.; Ge, S. Y.; Qiao, Y.; Chen, Y. M.; Liebervvirth, I.; Yu, Y.; Chen, C. H., A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. Chem. Eng. J. 2012, 192, 226-231.
92. Hao, Q.; Xu, L. Q.; Li, G. D.; Ju, Z. C.; Sun, C. H.; Ma, H. Y.; Qian, Y. T., Synthesis of MnO/C composites through a solid state reaction and their transformation into MnO2 nanorods. J. Alloys Compd. 2011, 509 (21), 6217-6221.
93. Liu, J.; Pan, Q., MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries. Electrochem. Solid-State Lett. 2010, 13 (10), 139-142.
94. Li, X.; Zhu, Y.; Zhang, X.; Liang, J.; Qian, Y., MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Adv. 2013, 3 (25), 10001-10006.
95. Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J., Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132 (40), 13978-13980.
96. Chae, C.; Kim, J. H.; Kim, J. M.; Sun, Y. K.; Lee, J. K., Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes. J. Mater. Chem. 2012, 22 (34), 17870-17877.
97. Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M., Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9 (3), 1002-1006.
98. D. A. Long, “Raman Spectroscopy” McGraw-Hill, New York, 1977.
99. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3 (12), 891-895
100. Pan, D.; Senpan, A.; Caruthers, S. D.; Williams, T. A.; Scott, M. J.; Gaffney, P. J.; Wickline, S. A.; Lanza, G. M., Sensitive and efficient detection of thrombus with fibrin-specific manganese nanocolloids. Chem. Commun. 2009, (22), 3234-3236.
101. Zhang, X.; Xing, Z.; Wang, L.; Zhu, Y.; Li, Q.; Liang, J.; Yu, Y.; Huang, T.; Tang, K.; Qian, Y.; Shen, X., Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22 (34), 17864.
102. Chae, C.; Park, H.; Kim, D.; Kim, J.; Oh, E. S.; Lee, J. K., A Li-ion battery using LiMn2O4 cathode and MnOx/C anode. J. Power Sources 2013, 244, 214-221.
103. Pelletier, M. J., Analytical applications of Raman spectroscopy., Eds. Blackwell Science, Oxford 1999.
104. Jang, B.; Park, M.; Chae, O. B.; Park, S.; Kim, Y.; Oh, S. M.; Piao, Y.; Hyeon, T., Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc. 2012, 134 (36), 15010-15215.
105. Zhong, K.; Zhang, B.; Luo, S.; Wen, W.; Li, H.; Huang, X.; Chen, L., Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011, 196 (16), 6802-6808.
106. Luo, W.; Hu, X.; Sun, Y.; Huang, Y., Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl. Mater. Interfaces 2013, 5 (6), 1997-2003.
107. Liu, X.; Chen, C.; Zhao, Y.; Jia, B., A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 1-7.
108. Guo, J.; Liu, Q.; Wang, C.; Zachariah, M. R., Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv. Funct. Mater. 2012, 22 (4), 803-811.
109. Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlogl, R.; Antonietti, M.; Maier, J., Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 2008, 47 (9), 1645-1649.
110. Zhong, K.; Xia, X.; Zhang, B.; Li, H.; Wang, Z.; Chen, L., MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195 (10), 3300-3308.
111. Kokubu, T.; Oaki, Y.; Hosono, E.; Zhou, H.; Imai, H., Biomimetic solid-solution precursors of metal carbonate for nanostructured metal oxides: MnO/Co and MnO-CoO nanostructures and their electrochemical properties. Adv. Funct. Mater. 2011, 21 (19), 3673-3680.
112. Yang, G.; Li, Y.; Ji, H.; Wang, H.; Gao, P.; Wang, L.; Liu, H.; Pinto, J.; Jiang, X., Influence of Mn content on the morphology and improved electrochemical properties of Mn3O4/MnO@carbon nanofiber as anode material for lithium batteries. J. Power Sources 2012, 216, 353-362.
113. Jasinski, J. B.; Ziolkowska, D.; Michalska, M.; Lipinska, L.; Korona, K. P.; Kaminska, M., Novel graphene oxide/manganese oxide nanocomposites. RSC Adv. 2013, 3 (45), 22857-22862.
114. Orsini, F.; Dollé, M.;Tarascon, J. M., Impedance study of the Li0/electrolyte interface upon cycling. Solid State Ionics 2000, 135, 213-221.
115. Kavan, L.; Fattakhova, D.;Krtil, P., Lithium insertion into mesoscopic and single-crystal TiO2 (rutile) electrodes J. Electrochem. Soc. 1999, 146, 1375-1379.
116. Ding, Y. L.; Wu, C. Y.; Yu, H. M.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B.; Zeng, Y. W., Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochim. Acta 2011, 56 (16), 5844-5848.
117. Liu, Y.; Zhao, X.; Li, F.; Xia, D., Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56 (18), 6448-6452.
118. Yu, X. Q.; He, Y.; Sun, J. P.; Tang, K.; Li, H.; Chen, L. Q.; Huang, X. J., Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem.Commun. 2009, 11 (4), 791-794.
119. Su, L.; Jing, Y.; Zhou, Z., Li ion battery materials with core-shell nanostructures. Nanoscale 2011, 3 (10), 3967-83.
120. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L. ; Tarascon, J. M., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803), 496-499.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *