|
參考文獻 1. Thanos D. Halazonetis, V.G.G., Jiri Bartek, An Oncogene-Induced DNA Damage Model for Cancer Development. science, 2008. 319: p. 1353-1355. 2. Sherr, C.J., Principles of Tumor Suppression. Cell, 2004. 116: p. 235–246. 3. M. S. Greenblatt, W.P.B., M. Hollstein, and C. C. Harris, Mutations in the p53 Tumor Suppressor Gene: Clues to Cancer Etiology and Molecular Pathogenesis. Cancer Research, 1994. 54: p. 4855-4878. 4. Michael Ho¨ckel, P.V., Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. Journal of the National Cancer Institute, 2001. 93: p. 266-276. 5. L.Harris, A., HYPOXIA — A KEY REGULATORY FACTOR IN TUMOUR GROWTH. NATURE REVIEWS, 2002. 2: p. 38-47. 6. Michael I. Koukourakis, M.P., Alexandra Giatromanolaki, Alexandra Tsarouha, Alexandros Polychronidis, Efthimios Sivridis, Costantinos Simopoulos, Oxygen and glucose consumption in gastrointestinal adenocarcinomas: Correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer science, 2006. 97: p. 1056–1060. 7. Teicher, B.A., Hypoxia and drug resistance. Cancer and Metastasis Reviews, 1994. 13: p. 139-168. 8. Shinae Kizaka-Kondoh, M.I., Hiroshi Harada, Masahiro Hiraoka, Tumor hypoxia: A target for selective cancer therapy. cancer science, 2003. 94: p. 1021–1028. 9. John E. Moulder, S.R., Tumor hypoxia: its impact on cancer therapy. Cancer and Metastasis Reviews, 1987. 5: p. 313-341. 10. Paola Allavena, A.S., Cecilia Garlanda, Alberto Mantovani, The tumor-associated macrophages in neoplastic progression and immune surveillance. Immunological Reviews, 2008. 222: p. 155-161. 11. Jinhyang Choi, H.-Y.K., Eun Jin Ju, Joohee Jung, Jaesook Park, Hye-Kyung Chung, Jin Seong Lee, Jung Shin Lee, Heon Joo Park, Si Yeol Song, Seong-Yun Jeong, Eun Kyung Choi, Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials, 2012. 33: p. 4195-4203. 12. LAWRENCE D. MAYER, G.D., TROY O. HARASYM and MARCEL B. BALLY, The Role of Tumor-Associated Macrophages in the Delivery of Liposomal Doxorubicin to Solid Murine Fibrosarcoma Tumors. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 1996. 280: p. 1406–1414. 13. Claire Lewis, C.M., Macrophage Responses to Hypoxia Implications for Tumor Progression and Anti-Cancer Therapies. American Journal of Pathology, 2005. 167: p. 627-635. 14. Paola Allavena, A.S., Graziella Solinas, Chiara Porta, Alberto Mantovani, The inflammatory micro-environment in tumor progression:The role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 2008. 66: p. 1-9. 15. Alberto Mantovani, T.S., Chiara Porta, Paola Allavena, Antonio Sica, Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev, 2006. 25: p. 315-322. 16. H. G. KEIZER, H.M.P., G. J. SCHUURHUISt, H. JOENJE, DOXORUBICIN (ADRIAMYCIN): A CRITICAL REVIEW OF FREE RADICAL-DEPENDENT MECHANISMS OF CYTOTOXICITY Pharmacology & Therapeutics, 1990. 47(2): p. 219-231. 17. Neena I Marupudi MS, J.E.H., Khan W Li MD, Violette M Renard MD, Betty M Tyler BA, Henry Brem, Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opinion on Drug Safety, 2007. 6: p. 609-621. 18. Dan Peer, J.M.K., Seungpyo Hong, Omid C. Farokhzad, Rimona Margalit, Robert Langer, Nanocarriers as an emerging platform for cancer therapy. nature nanotechnology, 2007. 2: p. 751-760. 19. Glen S. Kwon, T.k., Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21: p. 107-116. 20. Long Xu, J.B., Hao Yin, Thomas J. Anchordoquy, Ligands located within a cholesterol domain enhance gene delivery to the target tissue. Journal of Controlled Release, 2012. 160: p. 57–63. 21. Annette Rösler, G.W.M.V., Harm-Anton Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 2012. 64: p. 270–279. 22. Youhua Tao, M.N., Huanyu Dou, A novel therapeutic system for malignant glioma: nanoformulation, pharmacokinetic, and anticancer properties of cell-nano-drug delivery. Nanomedicine, 2012. 23. Katrin Knop, R.H., Dagmar Fischer, and Ulrich S. Schubert, Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie, 2010. 49: p. 6288 – 6308. 24. Yasuhiro Matsumura, H.M., A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research, 1986. 46: p. 6387-6392. 25. Fan Yuan, M.D., Dai Fukumura, Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 1995. 55: p. 3752-3756. 26. Jun Fang, H.N., Hiroshi Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 2011. 63: p. 136–151. 27. Martin Hruby´, C.e.r.K.a.k., Karel Ulbrich, Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release, 2005. 103: p. 137–148. 28. Hyun-Jong Cho, H.Y.Y., Heebeom Koo, Seung-Hak Ko, Jae-Seong Shim, Ju-Hee Lee ,Kwangmeyung Kim , Ick Chan Kwon , Dae-Duk Kim, Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic for tumor-targeted delivery of docetaxel. Biomaterials, 2011. 32: p. 7181-7190. 29. JI EUN LEE, N.L., TAEHO KIM, JAEYUN KIM, TAEGHWAN HYEON, Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. ACCOUNTS OF CHEMICAL RESEARCH, 2011. 44: p. 893–902. 30. Costas Kaparissides, S.A., Katerina Kotti and Sotira Chaitidou, Recent Advances in Novel Drug Delivery Systems. Azonano, 2006. 31. Xiao-Xia Yang, Z.-P.H., An-Long Xu, Wei Duan, Yi-Zhun Zhu, Min Huang, Fwu-Shan Sheu, Qiang Zhang, Jin-Song Bian, Eli Chan, Xiaotian Li, Jian-Cheng Wang, Shu-Feng Zhou, A Mechanistic Study on Reduced Toxicity of Irinotecan by Coadministered Thalidomide, a Tumor Necrosis Factor- Inhibitor. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2006. 319: p. 82–104. 32. Eun Ju Oh, K.P., Ki Su Kim, Jiseok Kim, Jeong-A Yang, Ji-Hyun Kong, Min Young Lee, Allan S. Hoffman, Sei Kwang Hahn, Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled Release, 2010. 141: p. 2-12. 33. Shanthi Ganesh, A.K.I., David V. Morrissey, Mansoor M. Amiji, Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013. 34: p. 3489-3502. 34. Bing-Xiang Zhao, Y.Z., Yue Huang, Lin-Min Luo, Ping Song, Xin Wang, Su Chen, Ke-Fu Yu, Xuan Zhang, Qiang Zhang, The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials, 2012. 33: p. 2508-2520. 35. Eun Seong Leea, H.J.S., Kun Naa, You Han Baea, Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. Journal of Controlled Release, 2008. 129: p. 228-236. 36. Eun Seong Leea, K.T.O., Dongin Kim, Yu Seok Youn, You Han Bae, Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly (ethylene glycol)-b-poly(L-histidine). Journal of Controlled Release, 2007. 123: p. 19–26. 37. Eun Seong Lee, K.N., You Han Bae, Super pH-Sensitive Multifunctional Polymeric Micelle. NANO LETTERS, 2005. 5: p. 325-329. 38. Eun Seong Lee, K.N., You Han Bae, Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release, 2002. 91: p. 103–113. 39. Xianchun Zhu, W.L., Wentong Lu, Aisha Reed, Brandon Newton, Zhen Fan, Hongtao Yu, Paresh C. Ray, Ruomei Gao, Imidazole-modified porphyrin as a pH-responsive sensitizer for cancer photodynamic therapy. Chemical Communications, 2011. 47: p. 10311-10313. 40. Steen J. Madsen, S.-K.B., Amani R. Makkouk, Tatiana Krasieva, Henry Hirschberg, Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy. NIH Public Access, 2012. 40: p. 507-515. 41. Nishit Doshi, A.J.S., Jonathan B. Gilbert, Maria L. Alcaraz, Robert E. Cohen, Michael F. Rubner, Samir Mitragotri, Cell-Based Drug Delivery Devices Using Phagocytosis- Resistant Backpacks. advanced healthcare material, 2011. 23: p. H105–H109. 42. Zhiyong Poon, D.C., Xiaoyong Zhao, and Paula T Hammond, Layer-by-Layer Nanoparticles with a pH-Sheddable Layer for in Vivo Targeting of Tumor Hypoxia. ACS NANO, 2011. 5: p. 4284–4292. 43. Hyukjin Lee, C.-H.A., Tae Gwan Park, Poly[lactic-co-(glycolic acid)]-Grafted Hyaluronic Acid Copolymer Micelle Nanoparticles for Target-Specific Delivery of Doxorubicin. Macromolecular Bioscience, 2009. 9: p. 336–342. 44. Zilong Zhao, H.M., Nannan Wang, Michael J. Donovan, Ting Fu, Mingxu You, and X.Z. Zhuo Chen, and Weihong Tan, A Controlled-Release Nanocarrier with Extracellular pH Value Driven Tumor Targeting and Translocation for Drug Delivery. Angew. Chem. Int. Ed., 2013. 52: p. 7487 –7491. 45. You-Yong Yuan, C.-Q.M., Xiao-Jiao Du, Jin-Zhi Du, Feng Wang, Jun Wang, Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Advanced Materials, 2012. 24: p. 5476-5480. 46. Weiwei Gao, J.M.C., Omid C. Farokhzad, pH-Responsive Nanoparticles for Drug Delivery. MOLECULAR PHARMACEUTICS, 2010. 7: p. 1913–1920. 47. K. Avgoustakis, A.B., Z. Panagi, P. Klepetsanis, A.G. Karydas, D.S. Ithakissios, PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. Journal of Controlled Release, 2002. 79: p. 123-135. 48. Karen Fu, D.W.P., Alexander M. Klibanov, Robert Langer, Visual Evidence of Acidic Environment Within Degrading Poly(lactic-co-glycolic acid) (PLGA) Microspheres. Pharmaceutical Research, 2000. 17: p. 100-1`06. 49. C. S. Yun, A.J., T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, G. F. Strouse, Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. journal of the american chemical society, 2005. 127: p. 3115-3119.
|