帳號:guest(3.139.239.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳雅伶
作者(外文):Chen, Ya-Ling
論文名稱(中文):具酸鹼應答特性之磷脂質包覆金奈米粒子於癌症標靶藥物治療之應用
論文名稱(外文):Phospholipid-assembled Doxorubicin/Gold Nanoconjugates: Targeted and pH- Responsive Drug Delivery
指導教授(中文):黃郁棻
指導教授(外文):Huang, Yu-Fen
口試委員(中文):張建文
黃志清
口試委員(外文):Chang, Chien-Wen
Huang, Chih-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:100012516
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:金奈米粒子酸鹼應答適體應用於標靶藥物治療脂質奈米粒子
外文關鍵詞:gold nanoparticlepH responsiveaptamer-based targeted drug deliverylipid nanoparticle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:176
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
近年來,生醫科技與奈米科技的快速發展,提升了在生醫治療上創新及多功能性平台的快速開發。設計磷脂質包覆的環境應答型奈米載體應用於癌症治療,在靶向傳輸及藥物控制釋放上具新穎性及研究潛力。本研究中,將具有二硫鍵 (disulfide bond) 的 3- (2-Pyridyldithio) propionyl hydrazide (PDPH) 透過腙鍵 (hydrazone bond) 與 Dox 鍵結而成的 pDox 前驅藥物分子,共價鍵結於檸檬酸鈉 (citrate) 還原而成的 13 nm 金奈米粒子上 (pDox-Au NPs),此一藥物設計具有酸鹼應答的概念,可以在細胞內酸性胞器環境進行藥物釋放。接著,將對於人類急性白血病 T 細胞 (CCRF-CEM cells, CCL-119 T-cell, human acute lymphoblastic leukemia) 上的 protein tyrosine kinase 7 (PTK7) 具有辨識性的適體 (aptamer) T30-sgc8c,修飾於金奈米粒子上 (sgc8c/pDox-Au NPs),再將載體以仿生材料脂質進行包覆,脂質組成為 1:1 的二肉豆蔻醯磷脂醯膽鹼 (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) 與 1-十四醯-2-羥基卵磷脂 (1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine, MHPC)。磷脂質包覆的金奈米藥物載體 (AL:sgc8c/pDox-Au NPs) 透過動態光散射分析儀 (Dynamic light scattering, DLS)、穿透式電子顯微鏡 (Transmission electron microscope, TEM) 及 DiI 螢光探針進行鑑定。奈米藥物載體與 CCRF-CEM 的專一性作用則透過流式細胞儀 (Flow cytometric analyses)、石墨爐原子吸收光譜儀 (Graphite furnace absorption spectrometry)、螢光顯微鏡 (Fluorescence microscopy)、暗視野顯微鏡 (Dark field microscopy)、共軛焦螢光顯微鏡 (Confocal fluorescence microscope) 及細胞存活率進行分析。整體而言,以非共價性脂質包覆的金奈米藥物載體成功被開發,而酸鹼應答及適體的結合也使藥物能針對目標細胞進行更精準的控制釋放,應用於癌症治療中更具優勢。
In recent years, progress on biotechnology and nanotechnology has facilitated a rapid development of innovative multifunctional platforms in applications of biomedical therapy. The design of environmental-responsive nanocarriers on the basis of lipid-encapsulated nanoparticles is particularly promising for targeted delivery and controlled drug release in cancer research. In this report, we describe the synthesis of doxorubicin (Dox) conjugated 13-nm gold nanoparticles (pDox-Au NPs), which exhibited a pH-responsive drug release profile, followed by the modification of multiple aptamers, T30-sgc8c, with the capability to recognize protein tyrosine kinase 7 (PTK7) on leukemia human T cell lymphoblast-like (CCRF-CEM) cell line. Furthermore, lipid-encapsulation was achieved by trapping the nanoparticles, sgc8c/pDox-Au NPs within the biocompatible assembled lipid, which constituted 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1-myristoyl-2-hydroxy -sn-glycero-3-phosphocholine (MHPC). The lipid layer of AL:sgc8c/pDox-Au NPs, was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and DiI probe. Flow cytometric, atomic absorption spectroscopic, fluorescence microscopic, dark field microscopic, confocal microscopic and MTT assay also describe the specific interactions between AL:sgc8c/pDox-Au NPs and CCRF-CEM cells. Overall, a gold-based drug nanocarrier with nonthiol containing phospholipid was successfully established to improve the therapeutic efficacy in tumor cells. The pH-responsiveness was furthermore, highly promising for precise drug releasing in targeted drug delivery.
總目錄
摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 奈米材料與生醫應用 1
1.1.1 奈米材料簡介 1
1.1.2 金奈米粒子的發展及其優勢 2
1.1.3 分子探針結合奈米藥物載體於標靶治療之應用 6
1.1.4 磷脂質包覆奈米粒子的發展及其優勢 10
1.1.5 觸發式的藥物釋放 14
1.1.5.1 化學性刺激─酸鹼應答 15
1.1.5.2 物理性刺激─光照 18
1.2 癌症與治療 20
1.2.1 癌症 20
1.2.2 藥物治療 20
1.2.3 前驅藥物 21
1.2.4 奈米載體與細胞及生物體的作用 23
1.3 研究動機與目的 27
第二章 實驗材料與方法 29
2.1 實驗藥品與儀器 29
2.1.1 實驗藥品 29
2.1.2 緩衝溶液配置 31
2.1.3 細胞培養與操作 32
2.1.4 儀器 33
2.2 pDox 的合成與特性鑑定 34
2.2.1 pDox 的合成 34
2.2.2 pDox 的特性鑑定 34
2.2.3 pDox 的酸鹼應答特性 35
2.2.4 pDox 的毒性測試 35
2.3 奈米藥物載體的合成與特性鑑定 36
2.3.1 金奈米粒子的合成 36
2.3.2 將 pDox 以及適體修飾於金奈米粒子的表面 37
2.3.3 包覆磷脂質於金奈米粒子表面 38
2.3.4 鑑定包覆磷脂質的金奈米粒子 38
2.3.5 磷脂質奈米藥物載體的酸鹼應答測試 39
2.3.6 不同表面修飾的奈米藥物載體的製備、鑑定與酸鹼應答測試 39
2.3.7 不同表面修飾的奈米藥物載體與細胞的作用情形 40
2.4 藥物載體與目標細胞 CCRF-CEM 的作用 42
2.4.1 利用螢光標記法測定載體對目標細胞的選擇性 42
2.4.2 測定目標細胞吞噬奈米載體的能力 43
2.4.3 螢光顯微鏡及暗視野顯微鏡影像 44
2.4.4 細胞存活率分析 45
第三章 實驗結果與討論 47
3.1 pDox 的特性 47
3.1.1 pDox 的合成與特性鑑定 47
3.1.2 pDox 的酸鹼應答特性 48
3.2 奈米藥物載體的特性鑑定 49
3.2.1 奈米藥物載體之光學特性與飽和藥物承載量 49
3.2.2 奈米藥物載體之粒徑大小和 Zeta 電位分析 50
3.2.3 DiI 螢光標定奈米載體上的磷脂質 50
3.2.4 奈米藥物載體的酸鹼應答特性 51
3.2.5 不同表面修飾對於奈米藥物載體特性影響 51
3.3 奈米藥物載體與目標細胞 CCRF-CEM 的作用 52
3.3.1 奈米藥物載體的標靶性 52
3.3.2 共軛焦顯微鏡影像 54
3.3.3 奈米藥物載體對癌細胞的毒性作用 54
第四章 結論 55
圖表說明 56
參考文獻 71
[1]. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103-1170.
[2]. Suh, W. H.; Suslick, K. S.; Stucky, G. D.; Suh, Y. H., Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 2009, 87, 133-70.
[3]. Weissleder, R., Molecular Imaging in Cancer. Science 2006, 312, 1168-1171.
[4]. Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Park, Y.; Kim, S., Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliver. Rev. 2012.
[5]. (a) Link, S.; El-Sayed, M. A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phy. Chem. 2000, 19, 409-453; (b) Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A., The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.
[6]. Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Au nanoparticles target cancer. Nano Today 2007, 2, 18-29.
[7]. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2002, 107, 668-677.
[8]. Hayat, M., Colloidal Gold: Principles, Methods and Applications. Academic Press: San Diego, CA, 1989.
[9]. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102-1106.
[10]. Sokolov, K.; Aaron, J.; Hsu, B.; Nida, D.; Gillenwater, A.; Follen, M.; MacAulay, C.; Adler-Storthz, K.; Korgel, B.; Descour, M., et al., Optical systems for in vivo molecular imaging of cancer. Technol. Cancer Res. Treat. 2003, 2, 491-504.
[11]. (a) Hermanson, G. T., Bioconjugate Techniques. Academic Press: San Diego, CA, 1996; (b) Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R., Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63, 1999-2004.
[12]. (a) Yelin, D.; Oron, D.; Thiberge, S.; Moses, E.; Silberberg, Y., Multiphoton plasmon-resonance microscopy. Opt. Express 2003, 11, 1385-1391; (b) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:  Applications in Oral Cancer. Nano Lett. 2005, 5, 829-834.
[13]. (a) Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D., Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small 2005, 1, 325-327; (b) Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M., Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir 2005, 21, 10644-10654.
[14]. Daniel, M.-C.; Astruc, D., Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2003, 104, 293-346.
[15]. Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W., Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Lett. 2009, 9, 1909-1915.
[16]. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A., Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027-1030.
[17]. (a) Chithrani, B. D.; Chan, W. C. W., Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Lett. 2007, 7, 1542-1550; (b) Giljohann, D. A.; Seferos, D. S.; Patel, P. C.; Millstone, J. E.; Rosi, N. L.; Mirkin, C. A., Oligonucleotide Loading Determines Cellular Uptake of DNA-Modified Gold Nanoparticles. Nano Lett. 2007, 7, 3818-3821; (c) Jiang, W.; KimBetty, Y. S.; Rutka, J. T.; ChanWarren, C. W., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145-150.
[18]. (a) Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold nanoparticles in delivery applications. Adv. Drug Deliver. Rev. 2008, 60, 1307-1315; (b) Kim, C.-k.; Ghosh, P.; Rotello, V. M., Multimodal drug delivery using gold nanoparticles. Nanoscale 2009, 1, 61-67.
[19]. Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M., Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliver. Rev. 2012, 64, 200-216.
[20]. Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D., et al., Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm:  Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17-30.
[21]. Gibson, J. D.; Khanal, B. P.; Zubarev, E. R., Paclitaxel-Functionalized Gold Nanoparticles. J. Am. Chem. Soc. 2007, 129, 11653-11661.
[22]. Aryal, S.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S., Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J. Mater. Chem. 2009, 19, 7879-7884.
[23]. Ellington, A. D.; Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818-822.
[24]. Tuerk, C.; Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505-10.
[25]. Hamula, C. L. A.; Guthrie, J. W.; Zhang, H.; Li, X.-F.; Le, X. C., Selection and analytical applications of aptamers. Trac - Trends Anal. Chem. 2006, 25, 681-691.
[26]. Guo, K. T.; Ziemer, G.; Paul, A.; Wendel, H. P., CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 2008, 9, 668-78.
[27]. (a) Shamah, S. M.; Healy, J. M.; Cload, S. T., Complex Target SELEX. Accounts Chem. Res. 2008, 41, 130-138; (b) Phillips, J. A.; Lopez-Colon, D.; Zhu, Z.; Xu, Y.; Tan, W., Applications of aptamers in cancer cell biology. Anal. Chim. Acta 2008, 621, 101-8.
[28]. Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11838-11843.
[29]. Lee, J. O.; So, H. M.; Jeon, E. K.; Chang, H.; Won, K.; Kim, Y. H., Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023-32.
[30]. Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L., Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185-229.
[31]. Zhu, G.; Ye, M.; Donovan, M. J.; Song, E.; Zhao, Z.; Tan, W., Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. 2012, 48, 10472-10480.
[32]. Bagalkot, V.; Farokhzad, O. C.; Langer, R.; Jon, S., An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chem. Int. Edit. 2006, 45, 8149-8152.
[33]. Huang, Y. F.; Shangguan, D.; Liu, H.; Phillips, J. A.; Zhang, X.; Chen, Y.; Tan, W., Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 2009, 10, 862-8.
[34]. Wang, H.; Yang, R.; Yang, L.; Tan, W., Nucleic Acid Conjugated Nanomaterials for Enhanced Molecular Recognition. ACS Nano 2009, 3, 2451-2460.
[35]. Yang, L.; Zhang, X.; Ye, M.; Jiang, J.; Yang, R.; Fu, T.; Chen, Y.; Wang, K.; Liu, C.; Tan, W., Aptamer-conjugated nanomaterials and their applications. Adv. Drug Deliver. Rev. 2011, 63, 1361-1370.
[36]. Huang, C.-C.; Huang, Y.-F.; Cao, Z.; Tan, W.; Chang, H.-T., Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Anal. Chem. 2005, 77, 5735-5741.
[37]. Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W., Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008, 80, 1067-72.
[38]. Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L., Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904-2074.
[39]. Sailor, M. J.; Park, J.-H., Hybrid Nanoparticles for Detection and Treatment of Cancer. Adv. Mater. 2012, 24, 3779-3802.
[40]. Simovic, S.; Barnes, T. J.; Tan, A.; Prestidge, C. A., Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. Nanoscale 2012, 4, 1220-1230.
[41]. (a) Preiss, M. R.; Bothun, G. D., Stimuli-responsive liposome-nanoparticle assemblies. Expert Opin. Drug Deliv. 2011, 8, 1025-1040; (b) Al-Jamal, W. T.; Kostarelos, K., Liposomes: From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine. Accounts Chem. Res. 2011, 44, 1094-1104; (c) Yang, J. A.; Murphy, C. J., Evidence for Patchy Lipid Layers on Gold Nanoparticle Surfaces. Langmuir 2012, 28, 5404-5416.
[42]. Rasch, M. R.; Rossinyol, E.; Hueso, J. L.; Goodfellow, B. W.; Arbiol, J.; Korgel, B. A., Hydrophobic Gold Nanoparticle Self-Assembly with Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles. Nano Lett. 2010, 10, 3733-3739.
[43]. Haeng Sub, W.; Kyuyong, L.; Hyuk Kyu, P., Interfacial energy consideration in the organization of a quantum dot–lipid mixed system. J. Phys.-Condes. Matter 2008, 20, 494211.
[44]. (a) Paasonen, L.; Laaksonen, T.; Johans, C.; Yliperttula, M.; Kontturi, K.; Urtti, A., Gold nanoparticles enable selective light-induced contents release from liposomes. J. Control. Release 2007, 122, 86-93; (b) Paasonen, L.; Sipilä, T.; Subrizi, A.; Laurinmäki, P.; Butcher, S. J.; Rappolt, M.; Yaghmur, A.; Urtti, A.; Yliperttula, M., Gold-embedded photosensitive liposomes for drug delivery: Triggering mechanism and intracellular release. J. Control. Release 2010, 147, 136-143.
[45]. Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A., Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J. Am. Chem. Soc. 2008, 130, 8175-8177.
[46]. Luthi, A. J.; Zhang, H.; Kim, D.; Giljohann, D. A.; Mirkin, C. A.; Thaxton, C. S., Tailoring of Biomimetic High-Density Lipoprotein Nanostructures Changes Cholesterol Binding and Efflux. ACS Nano 2011, 6, 276-285.
[47]. Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C., Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 2010, 142, 108-121.
[48]. Sitaula, S.; Mackiewicz, M. R.; Reed, S. M., Gold nanoparticles become stable to cyanide etch when coated with hybrid lipid bilayers. Chem. Commun. 2008, 0, 3013-3015.
[49]. Jin, Q.; Xu, J.-P.; Ji, J.; Shen, J.-C., Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles. Chem. Commun. 2008, 0, 3058-3060.
[50]. Tam, N. C. M.; Scott, B. M. T.; Voicu, D.; Wilson, B. C.; Zheng, G., Facile Synthesis of Raman Active Phospholipid Gold Nanoparticles. Bioconjugate Chem. 2010, 21, 2178-2182.
[51]. Ip, S.; MacLaughlin, C. M.; Gunari, N.; Walker, G. C., Phospholipid Membrane Encapsulation of Nanoparticles for Surface-Enhanced Raman Scattering. Langmuir 2011, 27, 7024-7033.
[52]. Tam, N. C. M.; McVeigh, P. Z.; MacDonald, T. D.; Farhadi, A.; Wilson, B. C.; Zheng, G., Porphyrin–Lipid Stabilized Gold Nanoparticles for Surface Enhanced Raman Scattering Based Imaging. Bioconjugate Chem. 2012, 23, 1726-1730.
[53]. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.
[54]. Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.-S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588-595.
[55]. (a) Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J., Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chem. Commun. 2010, 46, 1479-1481; (b) Eliyahu, G.; Kreizman, T.; Degani, H., Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. Int. J. Cancer 2007, 120, 1721-1730.
[56]. Leroueil, P. R.; Hong, S.; Mecke, A.; Baker, J. R.; Orr, B. G.; Banaszak Holl, M. M., Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Accounts Chem. Res. 2007, 40, 335-342.
[57]. Fleige, E.; Quadir, M. A.; Haag, R., Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliver. Rev. 2012, 64, 866-884.
[58]. Gao, W.; Chan, J. M.; Farokhzad, O. C., pH-Responsive Nanoparticles for Drug Delivery. Mol. Pharm. 2010, 7, 1913-1920.
[59]. Rajput, G.; Majmudar, F.; Patel, J.; Thakor, R.; Rajgor, N. B., Stomach-specific mucoadhesive microsphere as a controlled drug delivery system. Syst. Rev. Pharm. 2010, 1, 70.
[60]. Gerweck, L. E.; Vijayappa, S.; Kozin, S., Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther. 2006, 5, 1275-9.
[61]. Whitehead, K. A.; Langer, R.; Anderson, D. G., Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129-138.
[62]. (a) Yamanaka, Y. J.; Leong, K. W., Engineering strategies to enhance nanoparticle-mediated oral delivery. J. Biomater. Sci.-Polym. Ed. 2008, 19, 1549-70; (b) Morishita, M.; Peppas, N. A., Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today 2006, 11, 905-10.
[63]. Colombo, P.; Sonvico, F.; Colombo, G.; Bettini, R., Novel platforms for oral drug delivery. Pharm. Res. 2009, 26, 601-11.
[64]. Lee, C.-H.; Lo, L.-W.; Mou, C.-Y.; Yang, C.-S., Synthesis and Characterization of Positive-Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug Delivery of an Anti-Inflammatory Drug. Adv. Funct. Mater. 2008, 18, 3283-3292.
[65]. (a) Vaupel, P., Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 2004, 14, 198-206; (b) Vaupel, P.; Kallinowski, F.; Okunieff, P., Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Res. 1989, 49, 6449-6465.
[66]. Kim, J.-w.; Dang, C. V., Cancer's Molecular Sweet Tooth and the Warburg Effect. Cancer Res. 2006, 66, 8927-8930.
[67]. Christofk, H. R.; Vander Heiden, M. G.; Harris, M. H.; Ramanathan, A.; Gerszten, R. E.; Wei, R.; Fleming, M. D.; Schreiber, S. L.; Cantley, L. C., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452, 230-233.
[68]. Brahimi-Horn, M. C.; Pouyssegur, J., Oxygen, a source of life and stress. FEBS Lett. 2007, 581, 3582-91.
[69]. Aryal, S.; Hu, C.-M. J.; Zhang, L., Polymer−Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano 2009, 4, 251-258.
[70]. Murphy, R. F.; Powers, S.; Cantor, C. R., Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J. Cell Biol. 1984, 98, 1757-62.
[71]. Behr, J.-P., The Proton Sponge: a Trick to Enter Cells the Viruses Did Not Exploit. Chimia 1997, 51, 34-36.
[72]. Hoon Jeong, J.; Christensen, L. V.; Yockman, J. W.; Zhong, Z.; Engbersen, J. F.; Jong Kim, W.; Feijen, J.; Wan Kim, S., Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials 2007, 28, 1912-7.
[73]. Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316-317.
[74]. Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y.-J.; Liu, H.; Huang, Y.-F.; Zhang, X.; Tan, W., Near-Infrared Light-Responsive Core–Shell Nanogels for Targeted Drug Delivery. ACS Nano 2011, 5, 5094-5099.
[75]. Triesscheijn, M.; Baas, P.; Schellens, J. H. M.; Stewart, F. A., Photodynamic Therapy in Oncology. Oncologist 2006, 11, 1034-1044.
[76]. Hatz, S.; Lambert, J. D. C.; Ogilby, P. R., Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem. Photobio. Sci. 2007, 6, 1106-1116.
[77]. Chatterjee, D. K.; Fong, L. S.; Zhang, Y., Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliver. Rev. 2008, 60, 1627-37.
[78]. Selbo, P. K.; Weyergang, A.; Hogset, A.; Norum, O. J.; Berstad, M. B.; Vikdal, M.; Berg, K., Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J. Control. Release 2010, 148, 2-12.
[79]. Lehner, R.; Wang, X.; Wolf, M.; Hunziker, P., Designing switchable nanosystems for medical application. J. Control. Release 2012, 161, 307-16.
[80]. Seyfried, T. N.; Shelton, L. M., Cancer as a metabolic disease. Nutr. Metab. 2010, 7, 7.
[81]. Anand, P.; Kunnumakkara, A. B.; Sundaram, C.; Harikumar, K. B.; Tharakan, S. T.; Lai, O. S.; Sung, B.; Aggarwal, B. B., Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097-116.
[82]. Siegel, R.; Naishadham, D.; Jemal, A., Cancer statistics, 2012. CA-Cancer J. Clin. 2012, 62, 10-29.
[83]. Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S., et al., Cancer treatment and survivorship statistics, 2012. CA-Cancer J. Clin. 2012, 62, 220-241.
[84]. Upadhyay, K. K.; Bhatt, A. N.; Mishra, A. K.; Dwarakanath, B. S.; Jain, S.; Schatz, C.; Le Meins, J.-F.; Farooque, A.; Chandraiah, G.; Jain, A. K., et al., The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 2010, 31, 2882-2892.
[85]. Susa, M.; Iyer, A. K.; Ryu, K.; Hornicek, F. J.; Mankin, H.; Amiji, M. M.; Duan, Z., Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma. BMC Cancer 2009, 9, 399.
[86]. Devy, L.; de Groot, F. M.; Blacher, S.; Hajitou, A.; Beusker, P. H.; Scheeren, H. W.; Foidart, J. M.; Noel, A., Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity. FASEB J. 2004, 18, 565-7.
[87]. Zhang, X.; Chibli, H.; Mielke, R.; Nadeau, J., Ultrasmall Gold−Doxorubicin Conjugates Rapidly Kill Apoptosis-Resistant Cancer Cells. Bioconjugate Chem. 2010, 22, 235-243.
[88]. Allen, T. M.; Cullis, P. R., Drug Delivery Systems: Entering the Mainstream. Science 2004, 303, 1818-1822.
[89]. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161-171.
[90]. Farokhzad, O. C.; Langer, R., Impact of Nanotechnology on Drug Delivery. ACS Nano 2009, 3, 16-20.
[91]. Tiwari, P.; Vig, K.; Dennis, V.; Singh, S., Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31-63.
[92]. Gao, Z.; Zhang, L.; Sun, Y., Nanotechnology applied to overcome tumor drug resistance. J. Control. Release 2012, 162, 45-55.
[93]. Parhi, P.; Mohanty, C.; Sahoo, S. K., Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today 2012, 17, 1044-1052.
[94]. Mahato, R.; Tai, W.; Cheng, K., Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliver. Rev. 2011, 63, 659-670.
[95]. (a) Yamashita, F.; Hashida, M., Pharmacokinetic considerations for targeted drug delivery. Adv. Drug Deliver. Rev. 2013, 65, 139-147; (b) Bildstein, L.; Dubernet, C.; Couvreur, P., Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliver. Rev. 2011, 63, 3-23.
[96]. Kratz, F., Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171-83.
[97]. Kratz, F.; Warnecke, A., Finding the optimal balance: Challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J. Control. Release 2012, 164, 221-235.
[98]. Conner, S. D.; Schmid, S. L., Regulated portals of entry into the cell. Nature 2003, 422, 37-44.
[99]. (a) Park, J.; Nam, J.; Won, N.; Jin, H.; Jung, S.; Jung, S.; Cho, S.-H.; Kim, S., Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface: Specific Cell Interactions and Non-Specific Adsorptions by the Surface Charges. Adv. Funct. Mater. 2011, 21, 1558-1566; (b) Krpetić, Ž.; Nativo, P.; Prior, I. A.; Brust, M., Acrylate-Facilitated Cellular Uptake of Gold Nanoparticles. Small 2011, 7, 1982-1986.
[100]. (a) Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662-668; (b) Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S., Size-Dependent Endocytosis of Nanoparticles. Adv. Mater. 2009, 21, 419-424; (c) Wang, S. H.; Lee, C. W.; Chiou, A.; Wei, P. K., Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J. Nanobiotechnology 2010, 8, 33.
[101]. Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S., pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J. Am. Chem. Soc. 2009, 131, 13639-13645.
[102]. (a) Sonavane, G.; Tomoda, K.; Makino, K., Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloid Surf. B-Biointerfaces 2008, 66, 274-80; (b) De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J.; Geertsma, R. E., Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912-9.
[103]. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.
[104]. Wu, Y.; Sefah, K.; Liu, H.; Wang, R.; Tan, W., DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 5-10.
[105]. Bae, Y. H.; Park, K., Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 2011, 153, 198-205.
[106]. Kaneko, T.; Willner, D.; Monkovic, I.; Knipe, J. O.; Braslawsky, G. R.; Greenfield, R. S.; Vyas, D. M., New hydrazone derivatives of Adriamycin and their immunoconjugates - a correlation between acid stability and cytotoxicity. Bioconjugate Chem. 1991, 2, 133-141.
[107]. Hamid, R.; Rotshteyn, Y.; Rabadi, L.; Parikh, R.; Bullock, P., Comparison of alamar blue and MTT assays for high through-put screening. Toxicol. Vitro 2004, 18, 703-710.
[108]. Ohkuma, S.; Poole, B., Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 3327-31.
[109]. Huang, Y.-F.; Shangguan, D.; Liu, H.; Phillips, J. A.; Zhang, X.; Chen, Y.; Tan, W., Molecular Assembly of an Aptamer–Drug Conjugate for Targeted Drug Delivery to Tumor Cells. ChemBioChem 2009, 10, 862-868.
[110]. (a) Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloid Surf. B-Biointerfaces 2007, 58, 3-7; (b) Huo, F.; Lytton-Jean, A. K. R.; Mirkin, C. A., Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects. Adv. Mater. 2006, 18, 2304-2306.
[111]. Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A., Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal. Chem. 2006, 78, 8313-8318.
[112]. Nam, J.; La, W.-G.; Hwang, S.; Ha, Y. S.; Park, N.; Won, N.; Jung, S.; Bhang, S. H.; Ma, Y.-J.; Cho, Y.-M., et al., pH-Responsive Assembly of Gold Nanoparticles and “Spatiotemporally Concerted” Drug Release for Synergistic Cancer Therapy. ACS Nano 2013, 7, 3388-3402.
[113]. Xiao, Z.; Shangguan, D.; Cao, Z.; Fang, X.; Tan, W., Cell-Specific Internalization Study of an Aptamer from Whole Cell Selection. Chem.-Eur. J. 2008, 14, 1769-1775.
[114]. (a) Ahmed, S.; Savarala, S.; Chen, Y.; Bothun, G.; Wunder, S. L., Formation of Lipid Sheaths around Nanoparticle-Supported Lipid Bilayers. Small 2012, 8, 1740-1751; (b) Verma, A.; Stellacci, F., Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 2010, 6, 12-21; (c) Lin, J.; Zhang, H.; Chen, Z.; Zheng, Y., Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano 2010, 4, 5421-5429.
[115]. Kim, B.; Han, G.; Toley, B. J.; Kim, C.-k.; Rotello, V. M.; Forbes, N. S., Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol. 2010, 5, 465-472.
[116]. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles that are Responsive to Intracellular pH Change. Angew. Chem.- Int. Edit. 2003, 42, 4640-4643.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *